精英家教网 > 初中数学 > 题目详情
(2011?金华)如图,在?ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是_______.
2
根据平行四边形的性质得到AB=CD=3,AD=BC=4,求出BE、BF、EF,根据相似得出CH=1,EH= ,根据三角形的面积公式求△DFH的面积,即可求出答案.
解:∵四边形ABCD是平行四边形,
∴AD=BC=4,AB∥CD,AB=CD=3,
∵E为BC中点,
∴BE=CE=2,
∵∠B=60°,EF⊥AB,
∴∠FEB=30°,
∴BF=1,
由勾股定理得:EF=
∵AB∥CD,
∴△BFE∽△CHE,
EF:EH=BE:CE=BF:CH=1:1,
∴EF=EH=,CH=BF=1,
∵SDHF=DH?FH=4
∴SDEF=SDHF=2
本题主要考查对平行四边形的性质,平行线的性质,勾股定理,含30度角的直角三角形,三角形的面积,三角形的内角和定理等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60cm,菱形的面积S(单位:cm2)随其中一条对角线的长x(单位:cm)的变化而变化.
(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)当x是多少时,菱形风筝面积S最大?最大面积是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2002•徐州)已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题满分12分,每小题满分各6分)如图,在梯形ABCD中,AD//BCABDC,过点DDEBC,垂足为E,并延长DEF,使EFDE.联结BFCDAC
(1)求证:四边形ABFC是平行四边形;
(2)如DE2BE·CE,求证四边形ABFC是矩形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

(2011•临沂)如图,?ABCD,E是BA延长线上一点,AB=AE,连接CE交AD于点F,若CF平分∠BCD,AB=3,则BC的长为____________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

菱形具有而矩形不一定具有的性质是                               (    )
A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图(六)所示,在等腰梯形ABCD中,AB∥CD,AD=BC,AC⊥BC,∠B=60°,BC=2cm,则上底DC的长是            cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图23,ABCD为正方形,E为BC上一点,将正方形折叠,使A点与E点重合,折痕为MN,若

(1)求△ANE的面积;
(2)求sin∠ENB的值。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示,下列条件中,能判断AB∥CD的是(   )
A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD

查看答案和解析>>

同步练习册答案