精英家教网 > 初中数学 > 题目详情
5.(1)计算:${2013^0}+{({\frac{1}{2}})^{-2}}+4sin60°-|{-\sqrt{12}}|$.
(2)先化简,再求值:(x+3)2-(x-1)(x+2),其中x=-1.

分析 (1)利用绝对值的性质以和负整数指数幂的性质、特殊角的三角函数值化简求出即可;
(2)首先利用完全平方公式以及多项式乘法计算化简求出即可.

解答 解:(1)原式=1+4+2$\sqrt{3}$-2$\sqrt{3}$=5;

(2)原式=x2+6x+9-x2-x+2=5x+11,
当x=-1时,
 原式=5x+11=-5+11=6.

点评 此题主要考查了实数运算以及整式的混合运算,正确把握相关性质是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.如图,在平行四边形ABCD中,已知AB=4,AC=3,BC=5,以BC所在的直线为y轴,以点C为原点建立平面直角坐标系.x轴交AD于点E,有一动点P以5个单位/秒的速度熊A点出发,到达B点,再到C点停止,另一动点F以3个单位/秒的速度从C点出发向x轴的正方向运动,和点P同时开始,同时停止运动,令运动的时间为t.
(1)求点A,E的坐标.
(2)当P点在AB上运动时,设直线PF的函数解析式为y=kx+b,在运动的过程中,k的大小是否与t有关?若无关,请求出k的值;若有关,请写出k与t的函数关系式,并说明理由.
(3)在整个运动的过程中,求PF的中点的运动轨迹长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.在数学上,对于两个正数p和q有三种平均数,即算术平均数A、几何平均数G、调和平均数H,其中$A=\frac{p+q}{2}$,$G=\sqrt{pq}$,而调和平均数H满足$\frac{1}{p}-\frac{1}{H}=\frac{1}{H}-\frac{1}{q}$.我们把A、G、H称为p、q的平均数组.
①若p=2,q=6,则A=4,G=2$\sqrt{3}$,H=3.
②根据上述关系,可以推导出A、G、H三者的等量关系G2=AH.
③现在小明手里有一张卡片,上面标有数字$\frac{32}{5}$,另外在一个不透明的布袋中有三个小球,表面分别标有10,8,1,这三个球除了标的数不同外,其余均相同.若从布袋中任意摸出两个小球,求摸出的两个数字与卡片上数字恰好构成平均数组的概率.(请用“画树状图”或“列表”等方法给出分析过程,并求出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.方程4x2-kx+6=0的一个根是2,那么k的值和方程的另一个根分别是(  )
A.5,$\frac{3}{4}$B.11,$\frac{3}{4}$C.11,-$\frac{3}{4}$D.5,-$\frac{3}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,点B是⊙O上一点,连接BP并延长,交直线l于点C,使得AB=AC.
(1)求证:AB是⊙O的切线;
(2)若PC=2$\sqrt{3}$,OA=3,求⊙O的半径和线段PB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在平面直角坐标系中,△ABC是⊙O的内接三角形,AB=AC,点P是$\widehat{AB}$的中点,连接PA,PB,PC. 
(1)如图①,若∠BPC=60°,求证:AC=$\sqrt{3}$AP;
(2)如图②,若sin∠BPC=$\frac{24}{25}$,求tan∠PAB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.向如图所示的正六边形靶子上随意抛一枚飞镖,则飞镖插在阴影区域的概率为(  )
A.$\frac{2\sqrt{3}-π}{π}$B.$\frac{2π\sqrt{3}-9}{9}$C.$\frac{π-\sqrt{3}}{π}$D.$\frac{π\sqrt{3}-4}{9}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.是否存在x,使得当y=5时,分式$\frac{x+y}{{x}^{2}-{y}^{2}}$的值为0?若存在,求出x的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,⊙O的直径AB与弦CD相交于点P,且有PA=5,PB=1,∠APC=60°,求弦CD的长.

查看答案和解析>>

同步练习册答案