精英家教网 > 初中数学 > 题目详情

【题目】如图,,以BC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作,过点OAC的平行线交两弧于点DE,则阴影部分的面积是  

A. B.

C. D.

【答案】A

【解析】分析:如图,连接CE.图中S阴影=S扇形BCE-S扇形BOD-SOCE.根据已知条件易求得OB=OC=OD=2,BC=CE=4.∠ECB=60°,OE=2所以由扇形面积公式、三角形面积公式进行解答即可.

详解:如图,连接CE

ACBCAC=BC=4,以BC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作弧AB

∴∠ACB=90°OB=OC=OD=2,BC=CE=4.

又∵OEAC

∴∠ACB=COE=90°

在直角OEC中,

OC=2,CE=4,

∴∠CEO=30°,∠ECB=60°,OE==2

S阴影=S扇形BCE-S扇形BOD-SOCE

=

= .

故选A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】1)探索发现:如图1,已知RtABC中,∠ACB90°,ACBC,直线l过点C,过点AADl,过点BBEl,垂足分别为DE.求证:ADCECDBE

2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(13),求点N的坐标.

3)拓展应用:如图3,在平面直角坐标系内,已知直线y=﹣3x+3y轴交于点P,与x轴交于点Q,将直线PQP点沿逆时针方向旋转45°后,所得的直线交x轴于点R.求点R的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是将抛物线y=-x2 平移后得到的抛物线,其对称轴为x=1,与x轴的一个交点为A(-1,0) ,另一交点为B,与y轴交点为C.

(1)求抛物线的函数表达式;

(2)若点N 为抛物线上一点,且BCNC,求点N的坐标;

3)点P是抛物线上一点,点Q是一次函数y=x+的图象上一点,若四边形OAPQ为平行四边形,这样的点PQ是否存在?若存在,分别求出点PQ的坐标,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】O在直线PQ上,过点O作射线OC,使∠POC=130°,将一直角三角板的直角顶点放在点O.

1)如图所示,将直角三角板AOB的一边OA与射线OP重合,则∠BOC=________°.

2)将图中的直角三角板AOB绕点O旋转一定角度得到如图所示的位置,若OA平分∠POC,求∠BOQ的度数.

3)将图中的直角三角板AOB绕点O旋转一周,存在某一时刻恰有OB⊥OC,求出所有满足条件的∠AOQ的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.

(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出yx之间的函数表达式;(不要求写自变量的取值范围)

(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?

(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直线上,线段,动点出发,以每秒2个单位长度的速度在直线上运动.的中点,的中点,设点的运动时间为秒.

1)若点在线段上的运动,当时,________

2)若点在射线上的运动,当时,求点的运动时间的值;

3)当点在线段的反向延长线上运动时,线段ABPMPN有怎样的数量关系?请写出你的结论,并说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在一张矩形纸片ABCDAB=4BC=8EF分别在ADBC将纸片ABCD沿直线EF折叠C落在AD上的一点HD落在点G有以下四个结论

四边形CFHE是菱形线段BF的取值范围为3≤BF≤4

EC平分DCH当点H与点A重合时EF=

以上结论中你认为正确的有______.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+1y轴于点A,交x轴正半轴于点B(4,0) ,与过A点的直线相交于另一点D(3,) ,过点DDCx轴,垂足为C

(1)求抛物线的表达式;

(2)点P在线段OC上(不与点OC重合),过PPNx轴,交直线ADM,交抛物线于点N,连接CM,求△PCM 面积的最大值;

(3)若P x 轴正半轴上的一动点,设OP 的长为t.是否存在t,使以点MCDN 为顶点的四边形是平行四边形?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学开展了手机伴我健康行主题活动.他们随机抽取部分学生进行手机使用目的每周使用手机时间的问卷调查,并绘制成如图的统计图。已知查资料人人数是40人。

请你根据以上信息解答以下问题

1)在扇形统计图中,玩游戏对应的圆心角度数是_______________

2)补全条形统计图

3)该校共有学生1200人,估计每周使用手机时间在2小时以上(不含2小时)的人数

查看答案和解析>>

同步练习册答案