精英家教网 > 初中数学 > 题目详情
如图,⊙O的半径OA等于5,半径OC与弦AB垂直,垂足为D,若OD=3,则弦AB的长为( )

A.10
B.8
C.6
D.4
【答案】分析:可先在Rt△OAD中,根据勾股定理求出AD的长,进而可根据垂径定理,得AB=2AD,由此求得AB的值.
解答:解:Rt△OAD中,OD=3,OA=5;
根据勾股定理,得:AD==4;
∴AB=2AD=8;
故选B.
点评:此题主要考查勾股定理以及垂径定理的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径OA=5cm,若弦AB=8cm,P为AB上一动点,则点P到圆心O的最短距离为
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径OA等于5,半径OC与弦AB垂直,垂足为D,若OD=3,则弦AB的长为(  )
A、10B、8C、6D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径OA、OB分别交弦CD于点E、F,且CE=DF.请说明AE=BF.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=(  )
A、6
3
B、6
2
C、3
3
D、3
2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径OA=3,P是⊙O外一点,OP交⊙O于点B,PB=2,PA=4,
(1)求证:PA是⊙O的切线;
(2)若AD⊥OP于点D,求sin∠DAO的值.

查看答案和解析>>

同步练习册答案