精英家教网 > 初中数学 > 题目详情

【题目】关于反比例函数y= 的图象,下列说法正确的是(
A.图象经过点(1,1)
B.两个分支分布在第二、四象限
C.两个分支关于x轴成轴对称
D.当x<0时,y随x的增大而减小

【答案】D
【解析】解:A、把点(1,1)代入反比例函数y= 得2≠1不成立,故A选项错误; B、∵k=2>0,∴它的图象在第一、三象限,故B选项错误;
C、图象的两个分支关于y=﹣x对称,故C选项错误.
D、当x>0时,y随x的增大而减小,故D选项正确.
故选:D.
【考点精析】关于本题考查的反比例函数的性质,需要了解性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; 当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列关于函数y= (x﹣6)2+3的图象,下列叙述错误的是(
A.图象是抛物线,开口向上
B.对称轴为直线x=6
C.顶点是图象的最高点,坐标为(6,3)
D.当x<6时,y随x的增大而减小;当x>6时,y随x的增大而增大

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某汽车专买店销售A,B两种型号的新能源汽车,上周售出1A型车和3B型车,销售额为96万元;本周已售出2A型车和1B型车,销售额为62万元.

(1)求每辆A型车和B型车的件价各为多少万元;

每辆A型车和B型车的售价分别是x万元,y万元.

根据题意,列方程组   

解这个方程组,得x=   ,y=   

答:   

(2)有一家公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不超过130万元,求这次购进B型车最多几辆?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简÷,然后再从-2x≤2的范围内选取一个合适的x的整数值代入求值

【答案】4.

【解析】试题分析:先将原分式进行化解,化解过程中注意不为0的量,根据不为0的量结合x的取值范围得出合适的x的值,将其代入化简后的代数式中即可得出结论.

试题解析:原式===

其中,即x≠﹣101

∵﹣2x≤2x为整数,∴x=2

x=2代入中得: ==4

考点:分式的化简求值.

型】解答
束】
21

【题目】解方程:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,A(﹣2,0),C(2,2),过C作CB⊥x轴于B.

(1)如图1,△ABC的面积是   

(2)如图1,在y轴上找一点P,使得△ABP的面积与△ABC的面积相等,请直接写出P点坐标:   

(3)如图2,若过B作BD∥AC交y轴于D,则∠BAC+∠ODB的度数为   度;

(4)如图3,BD∥AC,若AE、DE分别平分∠CAB,∠ODB,求∠AED的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,点E是BC的中点,连接并延长DE交AB的延长线于点F.
(1)求证:△CDE≌△BFE;
(2)若CD=3cm,请求出AF的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系中,已知点,a的立方根,方程是关于x,y的二元一次方程,d为不等式组的最大整数解.

求点A、B、C的坐标;

如图1,若Dy轴负半轴上的一个动点,当时,的平分线交于M点,求的度数;

如图2,若Dy轴负半轴上的一个动点,连BDx轴于点E,问是否存在点D,使?若存在,请求出D的纵坐标的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,规定把一个点先绕原点逆时针旋转45°,再作出它关于原点的对称点称为一次变换,已知点A的坐标为(﹣2,0),把点A经过连续2014次这样的变换得到的点A2014的坐标是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】水利部确定每年的322日至28日为中国水周1994年以前为71日至7日),从1991年起,我国还将每年5月的第二周作为城市节约用水宣传周.某社区为了进一步提高居民珍惜水、保护水和水忧患意识,提倡节约用水,从本社区5000户家庭中随机抽取100户,调查他们家庭每月的平均用水量,并将调查的结果绘制成如下的两幅不完整的统计图表:

请根据上面的统计图表,解答下列问题:

1)在频数分布表中:m= n=

2)根据题中数据补全频数直方图;

3)如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社区用户中约有多少户家庭能够全部享受基本价格?

查看答案和解析>>

同步练习册答案