精英家教网 > 初中数学 > 题目详情
已知二次函数y1=ax2+bx+c(a≠0)的图象经过三点(1,0),(-3,0),(0,-
32
).精英家教网
(1)求二次函数的解析式.
(2)在给定的直角坐标系中作出这个函数的图象,并观察图象,写出x为何值,y<0.
分析:(1)由题意知二次函数y1=ax2+bx+c(a≠0)的图象经过两点(1,0),(-3,0),故设抛物线解析式为y=a(x-1)(x+3),然后把点(0,-
3
2
)代入即可求出a的值.
(2)首先找到二次函数图象的顶点坐标和对称轴,然后在平面直角坐标系上作出图象.
解答:精英家教网解:(1)设抛物线解析式为y=a(x-1)(x+3),
将(0,-
3
2
)代入,解得a=
1
2

∴抛物线解析式为y=
1
2
x2+x-
3
2


(2)
由图可以看出当-3<x<1时,y<0.
点评:本题主要考查用待定系数法求二次函数的解析式和作二次函数的图象的知识点,特别是作图的时候要仔细,作出的图形要美观大方,此题难度一般.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知二次函数y1=x2-2x-1的图象和反比例函数y2=
kx
的图象都经过点(1,a).
(1)求a的值;
(2)试在下图所示的直角坐标系中,画出该二次函数及反比例函数的图象,并利用图象比较y1与y2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象相交于点A(-2,4),B(8,2),则能使y1<y2成立的x的取值范围是
-2<x<8
-2<x<8

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•吴江市模拟)如图,已知二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象相交于A(-1,2)、B(4,1)两点,则关于x的不等式ax2+bx+c>kx+m的解集是
x<-1或x>4
x<-1或x>4

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y1=ax2+bx-3的图象经过点A(2,-3),B(-1,0),与y轴交于点C,与x轴另一交点交于点D.
(1)求二次函数的解析式;
(2)求点C、点D的坐标;
(3)若一条直线y2,经过C、D两点,请直接写出y1>y2时,x的取值范围.

查看答案和解析>>

同步练习册答案