【题目】如图1,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|2a+6|+(2a﹣3b+12)2=0,现同时将点A,B分别向左平移2个单位,再向上平移2个单位,分别得到点A,B的对应点C,D,连接AC,BD.
(1)请直接写出A、B、C、D四点的坐标;
(2)如图2,点P是线段AC上的一个动点,点Q是线段CD的中点,连接PQ,PO,当点P在线段AC上移动时(不与A,C重合),请找出∠PQD,∠OPQ,∠POB的数量关系,并证明你的结论;
(3)在坐标轴上是否存在点M,使三角形MAD的面积与三角形ACD的面积相等?若存在,直接写出点M的坐标;若不存在,试说明理由.
【答案】(1)A(﹣3,0),B(2,0),C(-5,2),D(0,2);(2)∠PQD+∠OPQ+∠POB=360°,理由见解析;(3)(2,0)或(﹣8,0)或(0,﹣)或(0,)
【解析】
(1)根据绝对值的非负性、偶次方的非负性分别求出a、b,得到点A,B的坐标,即可解决问题;
(2)求出五边形QPOBD的内角和,根据平行线的性质得到∠QDB+∠OBD=180°,计算即可;
(3)根据题意求出△ACD的面积,分点M在x轴上、点M在y轴上两种情况,根据三角形的面积公式计算即可.
解:(1)∵|2a+6|+(2a﹣3b+12)2=0,
∴|2a+6|=0,(2a﹣3b+12)2=0,
解得,a=﹣3,b=2,
则点A,B的坐标分别为A(﹣3,0),B(2,0);
将点A,B分别向左平移2个单位,再向上平移2个单位,分别得到点A,B的对应点C,D,则C(-5,2)D(0,2);
(2)∠PQD+∠OPQ+∠POB=360°,
理由如下:五边形QPOBD的内角和=(5﹣2)×180°=540°,
∵CD∥AB,
∴∠QDB+∠OBD=180°,
∴∠PQD+∠OPQ+∠POB=540°﹣(∠QDB+∠OBD)=360°;
(3)由题意得,点C的坐标为(﹣5,2),点D的坐标为(0,2),
则△ACD的面积=×5×2=5,
当点M在x轴上时,设点M的坐标为(x,0),
则AM=|﹣3﹣x|,
由题意得,×|﹣3﹣x|×2=5,
解得,x=2或﹣8,
当点M在y轴上时,设点M的坐标为(0,y),
则AM=|2﹣y|,
由题意得,×|2﹣y|×3=5,
解得,y=﹣或,
综上所述,三角形MAD的面积与三角形ACD的面积相等时,点M的坐标为(2,0)或(﹣8,0)或(0,﹣)或(0,).
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y= (m≠0)的图象交于第二、四象限内的A、B两点,与x轴交于C点,点B的坐 标为(6,n).线段OA=5,E为x轴上一点,且sin ∠AOE=.
【1】求该反比例函数和一次函数的解析式
【2】求△AOC的面积
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知矩形的边长.某一时刻,动点从点出发沿方向以的速度向点匀速运动;同时,动点从点出发沿方向以的速度向点匀速运动,问:
(1)经过多少时间,的面积等于矩形面积的?
(2)是否存在时刻t,使以A,M,N为顶点的三角形与相似?若存在,求t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰三角形ABC的底边BC长为4,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,若△CDM周长的最小值为8,则△ABC的面积为( )
A.12B.16C.24D.32
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.
组别 | 正确数字x | 人数 |
A | 0≤x<8 | 10 |
B | 8≤x<16 | 15 |
C | 16≤x<24 | 25 |
D | 24≤x<32 | m |
E | 32≤x<40 | n |
根据以上信息解决下列问题:
(1)在统计表中,m= ,n= ,并补全条形统计图.
(2)扇形统计图中“C组”所对应的圆心角的度数是 .
(3)有三位评委老师,每位老师在E组学生完成学校比赛后,出示“通过”或“淘汰”或“待定”的评定结果.学校规定:每位学生至少获得两位评委老师的“通过”才能代表学校参加鄂州市“汉字听写”比赛,请用树形图求出E组学生王云参加鄂州市“汉字听写”比赛的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,OA=2,以点A为圆心,1为半径画⊙A与OA的延长线交于点C,过点A画OA的垂线,垂线与⊙A的一个交点为B,连接BC
(1)线段BC的长等于 ;
(2)请在图中按下列要求逐一操作,并回答问题:
①以点 为圆心,以线段 的长为半径画弧,与射线BA交于点D,使线段OD的长等于;
②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的二次函数y=x2﹣(2m+3)x+m2+2
(1)若二次函数y的图象与x轴有两个交点,求实数m的取值范围.
(2)设二次函数y的图象与x轴的交点为A(x1,0),B(x2,0),且满足x12+x22=31+|x1x2|,求实数m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们定义一种新的运算“”:对于任意四个有理数,,,,可以组成两个有理数对与,并且规定:.
例如: .
根据上述规定解决下列问题:
(1)计算: ;
(2)若有理数对,则 ;
(3)若有理数对成立,则解得是整数,求整数的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】自2019年5月30日万州牌楼长江大桥正式通车以来,大放光彩,引万人驻足.市民们纷纷前往打卡、拍照留念,因此牌楼长江大桥成为了万州网红打卡地.周末,小棋和小艺两位同学相约前往参观,小棋骑自行车,小艺步行,她们同时从学校出发,沿同一条路线前往,出发一段时间后小棋发现东西忘了,于是立即以原速返回到学校取,取到东西后又立即以原速追赶小艺并继续前往,到达目的地后等待小艺一起参观(取东西的时间忽略不计),在整个过程两人保持匀速,如图是两人之间的距离与出发时间之间的函数图象如图所示,则当小棋到达目的地时,小艺离目的地还有______米.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com