精英家教网 > 初中数学 > 题目详情
(2013年四川眉山11分)如图,在平面直角坐标系中,点A、B在x轴上,点C、D在y轴上,且OB=OC=3,OA=OD=1,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点,直线AD与抛物线交于另一点M.

(1)求这条抛物线的解析式;
(2)P为抛物线上一动点,E为直线AD上一动点,是否存在点P,使以点A、P、E为顶点的三角形为等腰直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.
(3)请直接写出将该抛物线沿射线AD方向平移个单位后得到的抛物线的解析式.
解:(1)根据题意得,A(1,0),D(0,1),B(﹣3,0),C(0,﹣3),
∵抛物线经过点A(1,0),B(﹣3,0),C(0,﹣3),
,解得
∴抛物线的解析式为:y=x2+2x﹣3。
(2)存在。△APE为等腰直角三角形,有三种可能的情形:
①以点A为直角顶点,
如图,过点A作直线AD的垂线,与抛物线交于点P,与y轴交于点F。

∵OA=OD=1,∴△AOD为等腰直角三角形。
∵PA⊥AD,∴△OAF为等腰直角三角形。
∴OF=1,F(0,﹣1)。
设直线PA的解析式为y=kx+b,
将点A(1,0),F(0,﹣1)的坐标代入得:
,解得
∴直线PA的解析式为y=x﹣1。
将y=x﹣1代入抛物线解析式y=x2+2x﹣3得
x2+2x﹣3=x﹣1,整理得:x2+x﹣2=0,
解得x=﹣2或x=1。
当x=﹣2时,y=x﹣1=﹣3。∴P(﹣2,﹣3)。
②以点P为直角顶点,
此时∠PAE=45°,因此点P只能在x轴上或过点A与y轴平行的直线上。
过点A与y轴平行的直线,只有点A一个交点,故此种情形不存在;
因此点P只能在x轴上,而抛物线与x轴交点只有点A、点B,故点P与点B重合,
∴P(﹣3,0)。
③以点E为直角顶点,
此时∠EAP=45°,由②可知,此时点P只能与点B重合,点E位于直线AD与对称轴的交点上。
综上所述,存在点P,使以点A、P、E为顶点的三角形为等腰直角三角形。
点P的坐标为(﹣2,﹣3)或(﹣3,0)。
(3)y==x2+4x+1。
(1)应用待定系数法求出抛物线的解析式。
(2)△APE为等腰直角三角形,有三种可能的情形,需要分类讨论:
①以点A为直角顶点.过点A作直线AD的垂线,与抛物线的交点即为所求点P.首先求出直线PA的解析式,然后联立抛物线与直线PA的解析式,求出点P的坐标;
②以点P为直角顶点.此时点P只能与点B重合;
③以点E为直角顶点.此时点P亦只能与点B重合。
(3)抛物线的解析式为:y=x2+2x﹣3=(x+1)2﹣4,
∵抛物线沿射线AD方向平移个单位,相当于向左平移1个单位,并向上平移一个单位,
∴平移后的抛物线的解析式为:y=(x+1+1)2﹣4+1=x2+4x+1。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与x轴相交于点A、B,与y轴相交于点C,抛物线的对称轴与x轴相交于点M.P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上).分别过点A、B作直线CP的垂线,垂足分别为D、E,连接点MD、ME.

(1)求点A,B的坐标(直接写出结果),并证明△MDE是等腰三角形;
(2)△MDE能否为等腰直角三角形?若能,求此时点P的坐标;若不能,说明理由;
(3)若将“P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上)”改为“P是抛物线在x轴下方的一个动点”,其他条件不变,△MDE能否为等腰直角三角形?若能,求此时点P的坐标(直接写出结果);若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角梯形AOCB中,AB∥OC,∠AOC=90°,AB=1,AO=2,OC=3,以O为原点,OC、OA所在直线为轴建立坐标系.抛物线顶点为A,且经过点C.点P在线段AO上由A向点O运动,点O在线段OC上由C向点O运动,QD⊥OC交BC于点D,OD所在直线与抛物线在第一象限交于点E.

(1)求抛物线的解析式;
(2)点E′是E关于y轴的对称点,点Q运动到何处时,四边形OEAE′是菱形?
(3)点P、Q分别以每秒2个单位和3个单位的速度同时出发,运动的时间为t秒,当t为何值时,PB∥OD?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60.动点M、N分别以每秒1个单位的速度从点A、D同时出发,分别沿A→O→D和D→A运动,当点N到达点A时,M、N同时停止运动.设运动时间为t秒.

(1)求菱形ABCD的周长;
(2)记△DMN的面积为S,求S关于t的解析式,并求S的最大值;
(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DON?若存在,这样的点P有几个?并求出点P到线段OD的距离;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC的顶点坐标分别为A(﹣6,0),B(4,0),C(0,8),把△ABC沿直线BC翻折,点A的对应点为D,抛物线y=ax2﹣10ax+c经过点C,顶点M在直线BC上.

(1)证明四边形ABCD是菱形,并求点D的坐标;
(2)求抛物线的对称轴和函数表达式;
(3)在抛物线上是否存在点P,使得△PBD与△PCD的面积相等?若存在,直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是
A.a<0,b<0,c>0,b2﹣4ac>0B.a>0,b<0,c>0,b2﹣4ac<0
C.a<0,b>0,c<0,b2﹣4ac>0D.a<0,b>0,c>0,b2﹣4ac>0

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(2013年四川资阳3分)如图,抛物线y=ax2+bx+c(a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a﹣b+c,则P的取值范围是【   】
A.﹣4<P<0B.﹣4<P<﹣2C.﹣2<P<0D.﹣1<P<0

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax2+bx+c(a≠0)的图象经过点(x1,0)、(2,0),且﹣2<x1<﹣1,与y轴正半轴的交点在(0,2)的下方,则下列结论:
①abc<0;②b2>4ac;③2a+b+1<0;④2a+c>0.
则其中正确结论的序号是
A.①②B.②③C.①②④D.①②③④

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

由示意图可见,抛物线y=x2 +px+q   ①若有两点A(a,yl)、B(b,y2)(其中a<b)在x轴下方,则抛物线必与x轴有两个交点C(x1,O)、D(x2,O)(其中xl<x2),且满足xl<a<b<x2.当A(1,- 2.005),且xl、x2均为整数时,求二次函数的表达式,

查看答案和解析>>

同步练习册答案