精英家教网 > 初中数学 > 题目详情
已知抛物线y=ax2+4ax+m(a≠0)与x轴的交点为A(-1,0),B(x2,0)。
(1)直接写出一元二次方程ax2+4ax+m=0的两个根:x1 =         , x=       
(2)原抛物线与y轴交于C点,CD∥x轴交抛物线于D点,求CD的值;
(3)若点E(1,y1),点F(-3,y2)在原抛物线上,你能比较出y2和y1; 的大小吗?若能,请比较出大小,若不能,请说明理由。
解:(1)x1 =  -1      , x=    -3   
(2)∵抛物线y=ax2+4ax+m的对称轴是x=-2,点C是抛物线y=ax2+4ax+m与y轴的交点,
∴C到对称轴的距离是2,又∵CD∥x轴 ∴CD的距离是点C到对称轴距离的2倍,即2×2=4 即CD的值为4。
(3)不能判断出y2和y1; 的大小。因为抛物线y=ax2+4ax+m中a的正、负不能确定,也就不能确定抛物线的开口方向,抛物线是上升还是下降也就不能确定,因此y值随x值的变化也不能确定,所以不能判断出y2和y1; 的大小。
(1)先计算出抛物线的对称轴,再根据抛物线的对称性即可得到结果;
(2)根据抛物线的对称轴即可求出C到对称轴的距离,再根据抛物线的对称性即可得到结果;
(3)因为抛物线中a的正、负不能确定,也就不能确定抛物线的开口方向,抛物线是上升还是下降也就不能确定,因此y值随x值的变化也不能确定,所以不能判断出的大小。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知,如图所示抛物线与x的两个交点分别为A(1,0),B(3,0)。

(1)求抛物线的解析式;
(2)设点P在该抛物线上滑动,且满足条件S△PAB = 1这样的点P有几个?并求出所有点P 的坐标;
(3)设抛物线交y轴于点C,问该抛物线对称轴上是否存在点M,使得△MAC的周长最小.若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小明在一次高尔夫球比赛中,从山坡下的O点打出一记球向山坡上的球洞A点飞去,球的飞行路线为抛物线. 如果不考虑空气阻力,当球飞行的水平距离为9米时,球达到最大水平高度为12米.已知山坡OA与水平方向的夹角为30o,O、A两点相距  米.请利用下面所给的平面直角坐标系探索下列问题:

(1)求出点A的坐标;
(2)判断小明这一杆能否把高尔夫球从O点直接打入球洞A点,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当=O和=4时,y的值相等。直线y=4x-16与这条抛物线相交于两点,其中一点的横坐标是3,另一点是这条抛物线的顶点M。

(1)求这条抛物线的解析式;
(2)P为线段OM上一点,过点P作PQ⊥轴于点Q。若点P在线段OM上运动(点P不与点O重合,但可以与点M重合),设OQ的长为t,四边形PQCO的面积为S,求S与t之间的函数关系式及自变量t的取值范围;
(3)随着点P的运动,四边形PQCO的面积S有最大值吗?如果S有最大值,请求出S的最大值并指出点Q的具体位置和四边形PQCO的特殊形状;如果S没有最大值,请简要说明理由;
(4)随着点P的运动,是否存在t的某个值,能满足PO=OC?如果存在,请求出t的值。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题


查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在一个不透明的盒子里装有正面分别标有数,-1,0、1、3的6张卡片,背面完全相同,洗匀后,从中任取两张,该卡片上的数分别作为点P 的横坐标和纵坐标,P落在抛物线与对称轴右侧所围成的区域内(不含边界)的概率是     。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数的图象如图所示,下列结论正确的是(     )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示是二次函数图象的一部分,图象过点(3,0),二次函数图象对称轴为,给出四个结论:①;②;③;④,其中正确结论是(   )
A.②④B.①③C.②③D.①④

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,平面上一点P从点出发,沿射线OM方向以每秒1个单位长度的速度作匀速运动,在运动过程中,以OP为对角线的矩形OAPB的边长;过点O且垂直于射线OM的直线与点P同时出发,且与点P沿相同的方向、以相同的速度运动.
(1)在点运动过程中,试判断AB与y轴的位置关系,并说明理由.
(2)设点与直线L都运动了t秒,求此时的矩形OAPB与直线在运动过程中所扫过的区域的重叠部分的面积S(用含t的代数式表示).

查看答案和解析>>

同步练习册答案