【题目】在△ABC中,∠ACB=90°,AC=BC,直线,MN经过点C,且AD⊥MN于点D,BE⊥MN于点E。
(1)当直线MN绕点C旋转到如图1的位置时,求证:DE=AD+BE;
(2)当直线MN绕点C旋转到如图2的位置时,求证:DE=AD-BE;
(3)当直线MN绕点C旋转到如图3的位置时,线段DE、AD、BE之间又有什么样的数量关系?请你写出这个数量关系,并证明
【答案】(1)证明见详解;(2)证明见详解;(3)DE=BE-AD,理由见详解.
【解析】
(1)利用垂直的定义得∠ADC=∠CEB=90°,则根据互余得∠DAC+∠ACD=90°,再根据等角的余角相等得到∠DAC=∠BCE,然后根据“AAS”可判断△ADC≌△CEB,所以CD=BE,AD=CE,再利用等量代换得到DE=AD+BE;
(2)与(1)一样可证明△ADC≌△CEB,则CD=BE,AD=CE,于是有DE=CE-CD=AD-BE;
(3)与(1)一样可证明△ADC≌△CEB,则CD=BE,AD=CE,于是有DE=CD-CE=BE-AD.
(1)证明:∵AD⊥MN,BE⊥MN,
∴∠ADC=∠CEB=90°,
∴∠DAC+∠ACD=90°,
∵∠ACB=90°,
∴∠BCE+∠ACD=90°,
∴∠DAC=∠BCE,
在△ADC和△CEB,
,
∴△ADC≌△CEB(AAS),
∴CD=BE,AD=CE,
∴DE=CE+CD=AD+BE;
(2)证明:与(1)同理,可证明△ADC≌△CEB,
∴CD=BE,AD=CE,
∴DE=CE-CD=AD-BE;
(3)DE=BE-AD
证明:与(1)同理,可证明△ADC≌△CEB,
∴CD=BE,AD=CE,
∴DE=CD-CE=BE-AD.
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠BAC=45°,若BD=2,CD=3,AD⊥BC于D,将△ABD沿AB所在的直线折叠,使点D落在点E处;将△ACD沿AC所在的直线折叠,使点D落在点F处,分别延长EB、FC使其交于点M.
(1)判断四边形AEMF的形状,并给予证明.
(2)设AD=x,利用勾股定理,建立关于x的方程模型,求四边形AEMF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知线段和线段.
(1)按要求作图(保留作围痕迹,不写作法);
延长线段至点,使,反向延长线段至点,使;
(2)如果,分别是线段,的中点,且, ,求线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某车间接到一批限期(可以提前)完成的零件加工任务.如果每天加工150个,则恰好按期完成;如果每天加工200个,则可比原计划提前5天完成.
(1)求这批零件的个数;
(2)车间按每天加工200个零件的速度加工了个零件后,提高了加工速度,每天加工250个零件,结果比原计划提前6天完成了生产任务,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“绿水青山就是金山银山”.为保护生态环境,A、B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:
(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元?
(2)在人均支出费用不变的情况下,为节约开支,两村准备协调40人共同清理养鱼网箱和捕鱼网箱.要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】经过顶点的一条直线,.分别是直线上两点,且.
(1)若直线经过的内部,且在射线上,请解决下面两个问题:
①如图1,若,,
则 ; (填“”,“”或“”);
②如图2,若,请添加一个关于与关系的条件 ,使①中的两个结论仍然成立,并证明两个结论成立.
(2)如图3,若直线经过的外部,,请提出三条线段数量关系的合理猜想(不要求证明).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线分别与轴、轴交于点,,且点的坐标为,点为的中点.
(1)点的坐标是________,点的坐标是________;
(2)直线上有一点,若,试求出点的坐标;
(3)若点为直线上的一个动点,过点作轴的垂线,与直线交于点,设点的横坐标为,线段的长度为,求与的函数解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com