A. | 36° | B. | 40° | C. | 45° | D. | 50° |
分析 利用三角形的外角可得到:∠ADE+∠CDE=∠B+∠BAD,∠ADE=∠AED=∠C+∠EDC,然后进行代换得到∠C+∠BAD=∠C+20°+20°,即可求得答案.
解答 解:∵∠ADC是三角形ABD的外角,∠AED是三角形DEC的一个外角,∠CDE=20°,
∴∠ADC=∠BAD+∠B=∠ADE+∠EDC,∠AED=∠EDC+∠C,
∠B+∠BAD=∠ADE+20°,∠AED=∠C+20°,
∵AB=AC,D、E分别在BC、AC上,AD=AE,∠CDE=20°,
∴∠B=∠C,∠ADE=∠AED=∠C+20°,
∴∠C+∠BAD=∠C+20°+20°,
∴∠BAD=40°,
故选:B.
点评 本题主要考查了等腰三角形的性质以及三角形的外角性质,解题的关键是多次利用三角形外角的知识得到角之间的数量关系,此题难度不大.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\root{3}{-27}$ | B. | $\sqrt{8}$ | C. | (-$\sqrt{2}$-1)0 | D. | $\sqrt{(-2)^{2}}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com