精英家教网 > 初中数学 > 题目详情

【题目】如图,AB、CD是⊙O的直径,P上一个动点(不与B、C重合),PM、PN分别垂直CD、AB,垂足分别为点M、N.若∠AOC=60°,OA=4,则MN的长为________.

【答案】

【解析】

如图所示,延长PN交圆于点E,延长PM交圆于点F,连接EF、OE、OF,作OH⊥EFH.根据垂径定理,PN=NE,PM=MF,推出MN∥EFMN=EF,由∠MON=120°,∠PNO=∠PMO=90°,推出∠P=60°,推出弦EF的长为定值,

解:
如图所示,延长PN交圆于点E,延长PM交圆于点F,连接EF、OE、OF,作OH⊥EFH.根据垂径定理,PN=NE,PM=MF,
∴MN∥EFMN=EF,
∵∠MON=120°,∠PNO=∠PMO=90°,
∴∠P=60°,
EF的长为定值,MN的长也为定值,
Rt△EOH中,易知∠EOH=60°,∵OE=OA=4,
∴EH=OEsin60°=,
∴EF=4
∴MN=EF=2
故答案为2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如右图所示,直线y1=-2x+3和直线y2=mx-1分别交y轴于点A,B,两直线交于点C(1,n).

(1)m,n的值;

(2)求ΔABC的面积;

(3)请根据图象直接写出:y1<y2,自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示

(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;

(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;

(3)求两人相遇的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是O的弦,半径OCAB交AB于点D,点P是O上AB上方的一个动点(P不与A、B重合),已知∠APB=60°,∠OCB=2∠BCM.

(1)设A=α,当圆心O在APB内部时,写出α的取值范围;

(2)求证:CM是O的切线;

(3)若OC=4,PB=4,求PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠BAC.∠BCA的平分线交于点I,若∠ACB=75°AI=BCAC,则∠B的度数为(

A.30°B.35°C.40°D.45°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,点C在以AB为直径的⊙O,AD与过点C的切线CD垂直,垂足为点D.

求证:AC平分∠DAB;

(2)如图2,ABC为等腰三角形,AB=AC,OBC的中点,AB与⊙O相切于点D.

求证:是⊙的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是规格为的正方形网格,请在所给网格中按下列要求操作:

(1)请在网格中建立平面直角坐标系,使点A的坐标为,点的坐标为

(2)在第二象限内的格点上找一点,使点与线段组成一个以为底的等腰三角形,且腰长是无理数,画出,则点的坐标是 的周长是 (结果保留根号);

(3)作出关于轴对称的.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线与⊙相切于点为⊙的直径, 是直径右侧半圆上的一个动点(不与点重合),过点,垂足为,连接.设, .求: (1)相似吗?为什么?

(2)的函数关系式;

(3)为何值时,取得最大值,最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24 m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m.

(1)设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;

(2)若菜园面积为384 m2,求x的值;

(3)求菜园的最大面积.

查看答案和解析>>

同步练习册答案