【题目】如图,AB、CD是⊙O的直径,P为上一个动点(不与B、C重合),PM、PN分别垂直CD、AB,垂足分别为点M、N.若∠AOC=60°,OA=4,则MN的长为________.
【答案】
【解析】
如图所示,延长PN交圆于点E,延长PM交圆于点F,连接EF、OE、OF,作OH⊥EF于H.根据垂径定理,PN=NE,PM=MF,推出MN∥EF且MN=EF,由∠MON=120°,∠PNO=∠PMO=90°,推出∠P=60°,推出弦EF的长为定值,
解:
如图所示,延长PN交圆于点E,延长PM交圆于点F,连接EF、OE、OF,作OH⊥EF于H.根据垂径定理,PN=NE,PM=MF,
∴MN∥EF且MN=EF,
∵∠MON=120°,∠PNO=∠PMO=90°,
∴∠P=60°,
∴弦EF的长为定值,MN的长也为定值,
在Rt△EOH中,易知∠EOH=60°,∵OE=OA=4,
∴EH=OEsin60°=,
∴EF=4,
∴MN=EF=2,
故答案为2.
科目:初中数学 来源: 题型:
【题目】如右图所示,直线y1=-2x+3和直线y2=mx-1分别交y轴于点A,B,两直线交于点C(1,n).
(1)求m,n的值;
(2)求ΔABC的面积;
(3)请根据图象直接写出:当y1<y2时,自变量的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示
(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;
(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;
(3)求两人相遇的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的弦,半径OC⊥AB交AB于点D,点P是⊙O上AB上方的一个动点(P不与A、B重合),已知∠APB=60°,∠OCB=2∠BCM.
(1)设∠A=α,当圆心O在∠APB内部时,写出α的取值范围;
(2)求证:CM是⊙O的切线;
(3)若OC=4,PB=4,求PC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC.∠BCA的平分线交于点I,若∠ACB=75°,AI=BC-AC,则∠B的度数为( )
A.30°B.35°C.40°D.45°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,点C在以AB为直径的⊙O上,AD与过点C的切线CD垂直,垂足为点D.
求证:AC平分∠DAB;
(2)如图2,△ABC为等腰三角形,AB=AC,O是BC的中点,AB与⊙O相切于点D.
求证:是⊙的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是规格为的正方形网格,请在所给网格中按下列要求操作:
(1)请在网格中建立平面直角坐标系,使点A的坐标为,点的坐标为;
(2)在第二象限内的格点上找一点,使点与线段组成一个以为底的等腰三角形,且腰长是无理数,画出,则点的坐标是 ,的周长是 (结果保留根号);
(3)作出关于轴对称的.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与⊙相切于点为⊙的直径, 是直径右侧半圆上的一个动点(不与点、重合),过点作,垂足为,连接、.设, .求: (1)与相似吗?为什么?
(2)求与的函数关系式;
(3)当为何值时,取得最大值,最大值为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24 m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m.
(1)设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;
(2)若菜园面积为384 m2,求x的值;
(3)求菜园的最大面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com