精英家教网 > 初中数学 > 题目详情
13.如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.
(1)点D的坐标为(0,2);
(2)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标.

分析 由于C、D是定点,则CD是定值,如果△CDE的周长最小,即DE+CE有最小值.为此,作点D关于x轴的对称点D′,当点E在线段CD′上时,△CDE的周长最小.

解答 解:(1)∵OB=4,D为边OB的中点,
∴OD=2,
∴D(0,2),
故答案为:(0,2);
(2)如图,作点D关于x轴的对称点D′,连接CD′与x轴交于点E,连接DE.
若在边OA上任取点E′与点E不重合,连接CE′、DE′、D′E′
由DE′+CE′=D′E′+CE′>CD′=D′E+CE=DE+CE,
可知△CDE的周长最小.
∵在矩形OACB中,OA=3,OB=4,D为OB的中点,
∴BC=3,D′O=DO=2,D′B=6,
∵OE∥BC,
∴Rt△D′OE∽Rt△D′BC,有$\frac{OE}{BC}=\frac{D′O}{D′B}$,
∴OE=1,
∴点E的坐标为(1,0).

点评 此题主要考查轴对称--最短路线问题,解决此类问题,一般都是运用轴对称的性质,将求折线问题转化为求线段问题,其说明最短的依据是三角形两边之和大于第三边.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.小明手中有长度分别为1cm,3cm,3cm,4cm和5cm的五根细木棒,现从中随机取出三根细木棒.
(1)这三根细木棒能构成三角形的概率是$\frac{1}{3}$;
(2)这三根细木棒能构成直角三角形的概率与这三根细木棒能构成等腰三角形的概率哪一个大?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.计算:$(3\sqrt{48}-2\sqrt{27})÷\sqrt{6}$=$3\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.先化简,再求值:$\frac{x-2}{{2{x^2}+4x}}÷(x+2-\frac{8x}{x+2})$,其中x=$\sqrt{2}$+1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.五张标有2、2、3、4、5的卡片,除数字外,其他没有任何区别,现将它们背面朝上,从中任取一张,得到卡片的数字为偶数的概率是(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,已知矩形OABC的两边OA、OC分别落在x轴、y轴的正半轴上,顶点B的坐标是(6,4),反比例函数y=$\frac{k}{x}$(x>0)的图象经过矩形对角线的交点E,且与BC边交于点D.
(1)①求反比例函数的解析式与点D的坐标;
②直接写出△ODE的面积;
(2)若P是OA上的动点,求使得“PD+PE之和最小”时的直线PE的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.正比例函数y=k1x与一次函数y=k2x+b的图象如图所示,它们的交点A的坐标为(3,4),且OB=10.
(1)求这两个函数的表达式;
(2)求△OAB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.把关于x的方程ax2+bx+c=0(a≠0)化为(x+k)2=h的形式,当a、b、c满足什么关系时,方程有实数根?你能解出这个方程吗?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.若n≠0,且n是方程x2-mx+n=0的根,则m-n=1.

查看答案和解析>>

同步练习册答案