精英家教网 > 初中数学 > 题目详情
13.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,观察如图所示中每一个正方形(实践)四条边上的整点的个数,请你猜测由里向外第7个正方形(实线)四条边上的整点个数有(  )
A.24个B.28个C.32个D.30个

分析 依次找到从内到外的几个正方形上的整数点,得到规律,由规律求得第7个正方形的整点个数.

解答 解:由内到外规律,第1个正方形边上整点个数为4×1=4(个),
第2个正方形边上整点个数为4×2=8(个),第3个正方形边上整点个数为4×3=12(个),
第4个正方形边上整点个数为4×4=16(个);
故第7个正方形边上的整点个数为28个.
故选B.

点评 本题考查了坐标与图形的性质,解决本题的关键是仔细观察,找到规律,按规律运算.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

6.在计算结果为a6的个数是(  )
A.a2•a3B.a12÷a2C.(-a23D.a4•a2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.将连续正整数按图示的规律排列,观察图表并回答下列问题:
(1)在第1列第2013行的数是2025079;
(2)在第1行第n列的数是$\frac{n(n+1)}{2}$;
(3)位于第7行第7列的数是多少?为什么?
[参考公式:1+2+3+…+n=$\frac{n(n+1)}{2}$].

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图①,在梯形ABCD中,AB∥CD,∠B=90°,AB=6,CD=3,BC=$\sqrt{3}$.△EFG是边长为3的等边三角形,且与梯形ABCD位于直线AB同侧,点E与点A重合,EF与AB在同一直线上.△EFG以每秒1个单位的速度沿直线AB向右平移,当点E与点B重合时运动停止.设△EFG的运动时间为t(秒).
(1)当△EFG的边EG经过点D时,求t的值;
(2)在平移过程中,设△EFG与梯形ABCD重叠部分的面积为S,请直接写出S与t的函数关系式及其对应的自变量t的取值范围;
(3)如图②,当△EFG的平移运动停止后(此时点B与点E重合),将△EFG绕点F进行旋转,在旋转过程中,设EG所在直线与射线AD相交于点M,与射线FB相交于点N,当△AMN为等腰三角形时,求AN的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.设坐标轴的单位长度为1cm,整点P从原点O出发,作向上或向右运动,速度为1cm/s.当整点P从原点出发1秒时,可到达整点(1,0)或(0,1);当整点P从原点出发2秒时,可到达整点(2,0)、(0,2)或(1,1);当整点P从原点出发4秒时,可以得到的整点的个数为5个.当整点P从原点出发n秒时,可到达整点(x,y),则x、y和n的关系为x+y=n.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,PA、PB是⊙O的切线,A、B是切点,AC是⊙O的直径,连PC交⊙O于点D,若BD∥AC,则tan∠ACP的值是(  )
A.$\frac{3}{\sqrt{3}}$B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{3\sqrt{3}}{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知:如图,△ABC中,AB=AC,BD是AC边上的高
①求作:AB边上的高CE(垂足为E)(保留作图痕迹,不必写出作图过程)
②求证:AD=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,点P为双曲线y=$\frac{k}{x}$上一点,PE⊥x轴于点E,PF⊥y轴于点F,直线y=-$\frac{1}{2}$x+2与y轴、x轴分别交于点A、B,与PF、PE分别交于点C、D,若AD•BC=10,则k=4.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.下列计算正确的是(  )
A.(x33=x9B.(-2x)3=-6x3C.2x2-x=xD.x2÷x3=x2

查看答案和解析>>

同步练习册答案