精英家教网 > 初中数学 > 题目详情

【题目】如图,若二次函数yax2+bx+ca0)图象的对称轴为x1,与y轴交于点C,与x轴交于点A、点B(﹣10),则二次函数的最大值为a+b+c②9a+3b+c0③b24ac④c=﹣3a⑤y0时,﹣1x3,其中正确的个数是_____(填序号).

【答案】①④

【解析】

根据二次函数的图像与图上的坐标轴交点即可判断.

解:x1时,ya+b+c最大,故正确;

B(﹣10),对称轴为x1

∴(30

∴当x3时,y9a+3b+c0,故错误;

∵二次函数与x轴有两个不同交点,∴b24ac0,即b24ac,故错误;

x=﹣1,即b=﹣2a

x=﹣1时,y0,即ab+c0

a+2a+c0

c=﹣3a,故正确;

∵对称轴为x1B(﹣10),∴A30),由图象可得,y0时,﹣lx3,故错误.

故正确的有①④

故答案为①④

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,CACB,∠C90°,点DBC的中点,将△ABC沿着直线EF折叠,使点A与点D重合,折痕交AB于点E,交AC于点F,那么sinBED的值为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一直角三角形的直角顶点P在边长为1的正方形ABCD对角线AC上运动(点PAC两点不重合)且它的一条直角边始终经过点D,另一直角边与射线BC交于点E

1)当点EBC边上时,

求证:△PBC≌△PDC

判断△PBE的形状,并说明理由;

2)设APx,△PBE的面积为y

求出y关于x的函数关系式,并写出x的取值范围;

x取何值时,y取得最大值,并求出这个最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BDABCD的对角线,ABBDBD=8cmAD=10cm,动点P从点D出发,以5cm/s的速度沿DA运动到终点A,同时动点Q从点B出发,沿折线BD-DC运动到终点C,在BDDC上分别以8cm/s6cm/s的速度运动.过点QQMAB,交射线AB于点M,连接PQ,以PQQM为边作□PQMN.设点P的运动时间为ts)(t0),PQMNABCD重叠部分图形的面积为Scm2).

1AP= cm(用含t的代数式表示).

2)当点N落在边AB上时,求t的值.

3)求St之间的函数关系式.

4)连结NQ,当NQABD的一边平行时,直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线交AB,BC分别于点M,N,反比例函数的图象经过点M,N.

(1)求反比例函数的解析式;

(2)若点P在y轴上,且OPM的面积与四边形BMON的面积相等,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,以AB为边在半圆同侧作正方形ABCD,点PCD中点,BP与半圆交于点Q,连接DQ,设半圆的半径为a

1)判断直线DQ与半圆O的位置关系,并说明理由;

2)求sinDQP的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某外资企业生产的一批产品上市后30天内全部售完,该企业对这批产品上市后每天的销售情况进行了跟踪调查.其中,国内市场的日销售量y1(万件)与时间t(t为整数,单位:天)的部分对应值如下表所示.而国外市场的日销售量y2(万件)与时间t(t为整数,单位:天)的关系如图所示.

(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1t的变化规律,写出y1t的函数关系式及自变量t的取值范围;

(2)分别探求该产品在国外市场上市20天前(不含第20天)与20天后(含第20天)的日销售量y2与时间t所符合的函数关系式,并写出相应自变量t的取值范围;

(3)设国内、外市场的日销售总量为y万件,写出y与时间t的函数关系式,并判断上市第几天国内、外市场的日销售总量y最大,并求出此时的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了美化校园,学校决定利用现有的2660盆甲种花卉和3000盆乙种花卉搭配AB两种园艺造型共50个摆放在校园内,已知搭配一个A种造型需甲种花卉70盆,乙种花卉30盆,搭配一个B种造型需甲种花卉40盆,乙种花卉80盆.则符合要求的搭配方案有几种(  )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在东西方向的海岸线MN上有A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东58°方向,船P在船B的北偏西35°方向,AP的距离为30海里(参考数据:sin32°≈0.53,sin55°≈0.82).

(1)求船P到海岸线MN的距离(精确到0.1海里);

(2)若船A、船B分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.

查看答案和解析>>

同步练习册答案