精英家教网 > 初中数学 > 题目详情

如图,△OAB是边长为数学公式的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB 折叠,使点A落在边OB上,记为A′,折痕为EF.
(1)当A′E∥x轴时,求点A′和E的坐标;
(2)当A′E∥x轴,且抛物线数学公式经过点A′和E时,求抛物线与x轴的交点的坐标.

解:(1)由已知可得∠A′OE=60°,A′E=AE,
由A′E∥x轴,得△OA′E是直角三角形,
设A′的坐标为(0,b),
AE=A′E=b,OE=2b,b+2b=2+
所以b=1,
所以A′、E的坐标分别是(0,1)与(,1).

(2)因为A′、E在抛物线上,
所以
所以
函数关系式为y=-x2+x+1,
令y=0得到:-x2+x+1=0,
解得:x1=-,x2=2
与x轴的两个交点坐标分别是(,0)与(,0).
分析:(1)当A′E∥x轴时,△A′EO是直角三角形,可根据∠A′OE的度数用O′A表示出OE和A′E,由于A′E=AE,且A′E+OE=OA=2+,由此可求出OA′的长,也就能求出A′E的长.据此可求出A′和E的坐标;
(2)将A′,E点的坐标代入抛物线中,即可求出其解析式.进而可求出抛物线与x轴的交点坐标;
点评:本题着重考查了待定系数法求二次函数解析式、图形旋转变换、直角三角形的判定和性质等知识点,综合性较强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△OAB是边长为2的等边三角形,过点A的直线y=-
3
x
+m与x轴交于点E.
(1)求点E的坐标;
(2)求过A、O、E三点的抛物线解析式;
(3)若点P是(2)中求出的抛物线AE段上一动点(不与A、E重合),设四边形OAPE的面积为S,求S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△OAB是边长为4+2
3
的等边三角形,其中O是坐标原点,顶点B在y轴的正半轴上.将△精英家教网OAB折叠,使点A与OB边上的点P重合,折痕与OA、AB的交点分别是E、F.如果PE∥x轴,
(1)求点P、E的坐标;
(2)如果抛物线y=-
1
2
x2+bx+c经过点P、E,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△OAB是边长为2+
3
的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB折叠,使点A落在边OB上,记为A′,折痕为EF.
(1)当A′E∥x轴时,求点A′和E的坐标;
(2)当A′E∥x轴,且抛物线y=-
1
6
x2+bx+c经过点A′和E时,求抛物线与x轴的交点的坐标;
(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?精英家教网若能,请求出此时点A′的坐标;若不能,请你说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△OAB是边长为2+
3
的等边三角形,其中O是坐标原点,顶点B在y轴的正方向上,将△OAB折叠,使点A落在OB边上,记为A′,折痕为EF.
(1)当A′E∥x轴时,求点A'的坐标和直线A′F所对应的函数关系式;
(2)在OB上是否存在点A′,使四边形AFA′E是菱形?若存在,请求出此时点A′的坐标;若不存在,请说明理由;
(3)当点A′在OB上运动但不与点O、B重合,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△OAB是边长为2+
3
的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB 折叠,使点A落在边OB上,记为A′,折痕为EF.
(1)当A′E∥x轴时,求点A′和E的坐标;
(2)当A′E∥x轴,且抛物线y=-
1
6
x2+bx+c
经过点A′和E时,求抛物线与x轴的交点的坐标.

查看答案和解析>>

同步练习册答案