【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+3经过A(﹣3,0)、B(1,0)两点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合).
(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)如图1,过点P作PE⊥y轴于点E.求△PAE面积S的最大值;
(3)如图2,抛物线上是否存在一点Q,使得四边形OAPQ为平行四边形?若存在求出Q点坐标,若不存在请说明理由.
【答案】(1)抛物线的解析式为y=﹣x2﹣2x+3,顶点D的坐标为(﹣1,4);(2)△PAE面积S的最大值是;(3)点Q的坐标为(﹣2+,2﹣4).
【解析】
(1)根据抛物线y=ax2+bx+3经过A(﹣3,0)、B(1,0)两点,可以求得该抛物线的解析式,然后将函数解析式化为顶点式,从而可以得到该抛物线的顶点坐标,即点D的坐标;
(2)根据题意和点A和点D的坐标可以得到直线AD的函数解析式,从而可以设出点P的坐标,然后根据图形可以得到△APE的面积,然后根据二次函数的性质即可得到△PAE面积S的最大值;
(3)根据题意可知存在点Q使得四边形OAPQ为平行四边形,然后根据函数解析式和平行四边形的性质可以求得点Q的坐标.
解:(1)∵抛物线y=ax2+bx+3经过A(﹣3,0)、B(1,0)两点,
∴ ,得,
∴抛物线解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴抛物线的顶点坐标为(﹣1,4),
即该抛物线的解析式为y=﹣x2﹣2x+3,顶点D的坐标为(﹣1,4);
(2)设直线AD的函数解析式为y=kx+m,
,得,
∴直线AD的函数解析式为y=2x+6,
∵点P是线段AD上一个动点(不与A、D重合),
∴设点P的坐标为(p,2p+6),
∴S△PAE==﹣(p+)2+,
∵﹣3<p<﹣1,
∴当p=﹣时,S△PAE取得最大值,此时S△PAE=,
即△PAE面积S的最大值是;
(3)抛物线上存在一点Q,使得四边形OAPQ为平行四边形,
∵四边形OAPQ为平行四边形,点Q在抛物线上,
∴OA=PQ,
∵点A(﹣3,0),
∴OA=3,
∴PQ=3,
∵直线AD为y=2x+6,点P在线段AD上,点Q在抛物线y=﹣x2﹣2x+3上,
∴设点P的坐标为(p,2p+6),点Q(q,﹣q2﹣2q+3),
∴,
解得,或(舍去),
当q=﹣2+时,﹣q2﹣2q+3=2﹣4,
即点Q的坐标为(﹣2+,2﹣4).
科目:初中数学 来源: 题型:
【题目】若两个二次函数图象的顶点,开口方向都相同,则称这两个二次函数为“同簇二次函数”。
(1)请写出两个为“同簇二次函数”的函数;
(2)已知关于x的二次函数y1=2x2—4mx+2m2+1,和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2为y1为“同簇二次函数”,求函数y2的表达式,并求当0≤x≤3时,y2的最大值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,一次函数(为常数,)的图像与轴、轴分别相交于点,半径为4的⊙与轴正半轴相交于点,与轴相交于点,点在点上方.
(1)若直线与弧有两个交点.
①求的度数;
②用含的代数式表示,并直接写出的取值范围;
(2)设,在线段上是否存在点,使?若存在,请求出点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣2x2+4x与x轴交于点O、A,把抛物线在x轴及其上方的部分记为C1,将C1以y铀为对称轴作轴对称得到C2,C2与x轴交于点B,若直线y=x+m与C1,C2共有3个不同的交点,则m的取值范围是( )
A. 0<m< B. <m<
C. 0<m< D. m<或m<
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,AC、BD交于点O,AD=15,AO=12.动点P以每秒2个单位的速度从点A出发,沿AC向点C匀速运动.同时,动点Q以每秒1个单位的速度从点D出发,沿DB向点B匀速运动.当其中有一点列达终点时,另一点也停止运动,设运动的时间为t秒.
(1)求线段DO的长;
(2)设运动过程中△POQ两直角边的和为y,请求出y关于x的函数解析式;
(3)请直接写出点P在线段OC上,点Q在线段DO上运动时,△POQ面积的最大值,并写出此时的t值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AD是BC边的中线,过点A作BC的平行线,过点B作AD的平行线,两线交于点E.
(1)求证:四边形ADBE是矩形;
(2)连接DE,交AB于点O,若BC=8,AO=,求cos∠AED的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,P是CB边上一动点,连接AP,作PQ⊥AP交AB于Q.已知AC=3cm,BC=6cm,设PC的长度为xcm,BQ的长度为ycm.
小青同学根据学习函数的经验对函数y随自变量x的变化而变化的规律进行了探究.
下面是小青同学的探究过程,请补充完整:
(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y的几组对应值;
x/cm | 0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 6 |
y/cm | 0 | 1.56 | 2.24 | 2.51 | m | 2.45 | 2.24 | 1.96 | 1.63 | 1.26 | 0.86 | 0 |
(说明:补全表格时,相关数据保留一位小数)
m的值约为多少cm;
(2)在平面直角坐标系中,描出以补全后的表格中各组数值所对应的点(x,y),画出该函数的图象;
(3)结合画出的函数图象,解决问题:
①当y>2时,写出对应的x的取值范围;
②若点P不与B,C两点重合,是否存在点P,使得BQ=BP?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:点A(0,4),B(0,﹣6),C为x轴正半轴上一点,且满足∠ACB=45°,则( )
A. △ABC外接圆的圆心在OC上
B. ∠BAC=60°
C. △ABC外接圆的半径等于5
D. OC=12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在△ABC中,AB=4,BC=5,CA=6.
(1)如果DE=10,那么当EF=________,FD=________时,△DEF∽△ABC;
(2)如果DE=10,那么当EF=________,FD=________时,△FDE∽△ABC.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com