精英家教网 > 初中数学 > 题目详情
如图,直线y=x+与x轴、y轴分别相交于A,B两点,圆心P的坐标为(1,0),⊙P与y轴相切于点O.若将⊙P沿x轴向左移动,当⊙P与该直线相交时,横坐标为整数的点P有    个.
【答案】分析:因为是动点,所以从特殊位置(相切)入手分析,分右相切和左相切两种情况,然后求解.
解答:解:若圆和直线相切,则圆心到直线的距离应等于圆的半径1,
据直线的解析式求得A(-3,0),B(0,),
则tan∠BAO==
所以∠BAO=30°,
所以当相切时,AP=2,
点P可能在点A的左侧或右侧.所以要相交,应介于这两种情况之间,即需要移动的距离>4-2=2,而<3+2=5,此时横坐标为整数的点P有(-2,0)(-3,0)(-4,0)三个.
故答案为3.
点评:注意:本题正确答案为3,有许多学生把直线与圆相切的点也看成交点,得到答案是5;也有的学生只考虑⊙P在线段OA之间运动,得到答案为2.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,直线y=k1x与双曲线y=
k2x
交于A、B两点,那么点B的坐标是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线y=x与反比例函数y=
k
x
(x>0)的图象交于点A,AB⊥y轴,垂足为B,点C在射线BA上(端点除外),点E在x轴上,且∠OCE=90°,CH⊥x轴,垂足为H,并与反比例函数y=
k
x
图象交于点G.
(1)若点B的坐标为(0,4),求k的值;
(2)在(1)的条件下,求证:HG=HE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•张家界)如图,直线x=2与反比例函数y=
2
x
y=-
1
x
的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是
3
2
3
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•锦州)如图,直线y=mx与双曲线y=
k
x
交于A,B两点,过点A作AM⊥x轴,垂足为点M,连接BM,若S△ABM=2,则k的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线y=mx与双曲线y=
k
x
交于A、B两点,过点A作AM⊥x轴,垂足为M,连结BM,若S△ABM=3,则k的值是(  )

查看答案和解析>>

同步练习册答案