精英家教网 > 初中数学 > 题目详情
17.在平面直角坐标系中,点P(a,3)与点Q(-2,b)关于原点成中心对称,则a+b的值为(  )
A.-5B.-1C.1D.5

分析 首先根据点P(a,3)与点Q(-2,b)关于原点成中心对称,可得a=2,b=-3,然后把a、b的值代入,求出a+b的值为多少即可.

解答 解:∵点P(a,3)与点Q(-2,b)关于原点成中心对称,
∴a=2,b=-3,
∴a+b=2-3=-1.
故选:B.

点评 此题主要考查了关于原点对称的点的坐标,要熟练掌握,解答此题的关键是要明确:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(-x,-y).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

7.掷一枚质地均匀的正方体骰子,骰子的六个面上分别标有1、2、3、4、5、6的点数,掷得面朝上的点数为奇数的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1,y2的大小关系为(  )
A.y1=y2B.y1>y2
C.y1<y2D.y1,y2的大小关系不确定

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.(1)计算:$\sqrt{27}$÷$\sqrt{3}$-$\sqrt{18}$×$\sqrt{2}$;
(2)解方程:x2-4x+3=0.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.在四边形ABCD中,对角线AC,BD互相平分,若添加一个条件使得四边形ABCD是矩形,则这个条件可以是(  )
A.∠ABC=90°B.AC⊥BDC.AB=CDD.AB∥CD

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,AB⊥BF,CD⊥BF,∠BAF=∠AFE,请说明∠ACD=∠E.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,点O是菱形ABCD两边对角线的交点,过O点的三条直线将菱形分成阴影部分和空白部分.已知∠D=150°,AD=$\sqrt{5}$,则阴影部分的面积为(  )
A.$\frac{1}{2}$$\sqrt{5}$B.$\frac{5}{4}$C.$\frac{1}{4}$$\sqrt{5}$D.$\frac{3}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下列各式中是二次根式的是(  )
A.$\sqrt{-7}$B.$\root{4}{8}$C.$\sqrt{{a}^{2}+1}$D.$\root{3}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,要用“SAS”证△ABC≌△ADE,若已知AB=AD,AC=AE,则需要条件是(  )
A.∠1=∠2B.∠E=∠CC.∠BAD=∠CAED.∠B=∠D

查看答案和解析>>

同步练习册答案