精英家教网 > 初中数学 > 题目详情
5.先化简,再求值:(a+2b)(a-b)+(2a-b)2-5a(a-b),其中a=-1,b=2.

分析 首先化简(a+2b)(a-b)+(2a-b)2-5a(a-b),然后把a=-1,b=2代入化简后的算式,求出算式的值是多少即可.

解答 解:(a+2b)(a-b)+(2a-b)2-5a(a-b)
=a2+ab-2b2+4a2-4ab+b2-5a2+5ab
=2ab-b2
当a=-1,b=2时
原式=2×(-1)×2-22
=-4-4
=-8

点评 此题主要考查了整式的混合运算-化简求值,要熟练掌握,注意先按运算顺序把整式化简,再把对应字母的值代入求整式的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.解不等式,并把它的解集在数轴上表示出来.
(1)x-4≥2(x+2)
(2)6(x-1)≥3+4x
(3)$\frac{x-2}{2}$≥$\frac{7-x}{3}$
(4)$\frac{2x-1}{3}$-$\frac{5x-1}{9}$<0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.对于正数x,用符号[x]表示x的整数部分,例如:[0.1]=0,[2.5]=2,[3]=3.点A(a,b)在第一象限内,以A为对角线的交点画一个矩形,使它的边分别与两坐标轴垂直.其中垂直于y轴的边长为a,垂直于x轴的边长为[b]+1,那么,把这个矩形覆盖的区域叫做点A的矩形域.例如:点$(3,\frac{3}{2})$的矩形域是一个以$(3,\frac{3}{2})$为对角线交点,长为3,宽为2的矩形所覆盖的区域,如图1所示,它的面积是6.

根据上面的定义,回答下列问题:
(1)在图2所示的坐标系中画出点$(2,\frac{7}{2})$的矩形域,该矩形域的面积是8;
(2)点$P(2,\frac{7}{2}),Q(a,\frac{7}{2})(a>0)$的矩形域重叠部分面积为1,求a的值;
(3)已知点B(m,n)(m>0)在直线y=x+1上,且点B的矩形域的面积S满足4<S<5,那么m的取值范围是$\frac{4}{3}$<m<$\frac{5}{3}$.(直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.计算:4$\sqrt{5}$+$\sqrt{45}$-10$\sqrt{\frac{1}{5}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知直角三角形中一条直角边长为4,如果斜边长与另一条直角边长的和是10,求斜边上的中线长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.(1)计算:(1-$\sqrt{3}$)2(1-$\sqrt{2}$)2(1+$\sqrt{2}$)2(1+$\sqrt{3}$)2-($\sqrt{3}$-$\sqrt{2}$)2
(2)用适当方法解方程.x2-2x=2x+1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,
(1)求∠EAF的度数;
(2)在图①中,连结BD分别交AE、AF于点M、N,将△ADN绕点A顺时针旋转90°至△ABH位置,连结
         MH,得到图②.求证:MN2=MB2+ND2
(3)在图②中,若AG=12,BM=3$\sqrt{2}$,直接写出MN的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.计算:
(1)-$\sqrt{\frac{25}{9}}$
(2)$\root{3}{0.064}$
(3)($\sqrt{5}$+$\sqrt{6}$)-2$\sqrt{6}$
(4)|2$\sqrt{3}$-3$\sqrt{2}$|-|-3$\sqrt{2}$|

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=10,则∠ABC=120°,对角线AC的长为10$\sqrt{3}$.

查看答案和解析>>

同步练习册答案