6£®ÔĶÁÏÂÁвÄÁÏ£¬²¢»Ø´ðÎÊÌ⣮
ÎÒÃÇÖªµÀ|a|µÄ¼¸ºÎÒâÒåÊÇÖ¸ÊýÖáÉϱíʾÊýaµÄµãÓëÔ­µãµÄ¾àÀ룬ÄÇô|a-b|µÄ¼¸ºÎÒâÒåÓÖÊÇʲôÄØ£¿ÎÒÃDz»·Á¿¼ÂÇһϣ¬a£¬bµÄÌØÊâÖµµÃÇé¿ö£®±ÈÈ翼ÂÇ|5-£¨-6£©|µÄ¼¸ºÎÒâÒ壬ÔÚÊýÖáÉÏ·Ö±ð±ê³ö-6ºÍ5µÄµãA¡¢B£¨ÈçͼËùʾ£©£¬A¡¢BÁ½µã¼äµÄ¾àÀëÊÇ11£¬¶ø|5-£¨-6£©|=11£¬Òò´Ë²»ÄÑ¿´³ö|5-£¨-6£©|¾ÍÊÇÊýÖáÉϱíʾ-6ºÍ5Á½µã¼äµÄ¾àÀ룮
£¨1£©|a-b|µÄ¼¸ºÎÒâÒåÊÇÊýÖáÉϱíʾaºÍbÁ½µã¼äµÄ¾àÀ룻
£¨2£©¸ù¾Ý|a-b|µÄ¼¸ºÎÒâÒåÓÖÖª|a-b|=|b-a|£¨Ìî¡°£¾¡±¡°£¼¡±¡°=¡±£©£»
£¨3£©Ëµ³ö|x-2|µÄ¼¸ºÎÒâÒ壬²¢Çó³öµ±|x-2|=2ʱxµÄÖµ£»
£¨4£©Èô3.4-|x-3|ÓÐ×î´óÖµ£¬ÇóxµÄÖµ£®

·ÖÎö £¨1£©¸ù¾Ý¡°|5-£¨-6£©|¡±£¬ËüÔÚÊýÖáÉϵÄÒâÒåÊDZíʾ5µÄµãÓë±íʾ2µÄµãÖ®¼äµÄ¾àÀë½øÐлش𼴿ɣ»
£¨2£©¸ù¾ÝÁ½µã¼äµÄ¾àÀë¼´¿É½â´ð£»
£¨3£©|x-2|µÄ¼¸ºÎÒâÒåÊÇÔÚÊýÖáÉϱíʾxµÄµãÓë±íʾ2µÄµãÖ®¼äµÄ¾àÀ룻
£¨4£©¸ù¾Ý¾ø¶ÔֵΪ·Ç¸ºÊý£¬µ±3.4-|x-3|ÓÐ×î´óÖµ£¬¼´|x-3|=0£®

½â´ð ½â£º£¨1£©£©|a-b|µÄ¼¸ºÎÒâÒåÊÇÊýÖáÉϱíʾaºÍbÁ½µã¼äµÄ¾àÀ룬¹Ê´ð°¸Îª£ºÊýÖáÉϱíʾaºÍbÁ½µã¼äµÄ¾àÀ룻
£¨2£©¸ù¾Ý|a-b|µÄ¼¸ºÎÒâÒåÓÖÖª|a-b|=|b-a|£¬¹Ê´ð°¸Îª£º=£»
£¨3£©|x-2|µÄ¼¸ºÎÒâÒåÊÇÔÚÊýÖáÉϱíʾxµÄµãÓë±íʾ2µÄµãÖ®¼äµÄ¾àÀ룬
|x-2|=2£¬
x-2=2»òx-2=-2£¬
½âµÃ£ºx=4»ò0£»
£¨4£©µ±3.4-|x-3|ÓÐ×î´óÖµ£¬¼´|x-3|=0£®
½âµÃ£ºx=3£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éµÄÊǾø¶ÔÖµµÄ¶¨ÒåµÄÓ¦Óã¬Àí½â²¢Ó¦Óþø¶ÔÖµµÄ¶¨ÒåÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªÒ»´Î·½³Ìy=kx+b£¨k¡Ù0£©µÄ¸ù¾ÍÊÇÒ»´Îº¯Êýy=kx+bµÄͼÏóÓëxÖá½»µãµÄ£¨¡¡¡¡£©×ø±ê£®
A£®ºáB£®×ÝC£®Æ½D£®Êú

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬µãAºÍµãBÔÚÊýÖáÉÏ

£¨1£©·Ö±ðд³öA¡¢BÁ½µã±íʾµÄÊý£»
£¨2£©ÔÚÊýÖáÉÏ·Ö±ð±ê³ö±íʾ-1.5µÄCµã£¬±íʾ4.5µÄDµã£»
£¨3£©½«A£¬B£¬C£¬D±íʾµÄÓÐÀíÊýÓá°£¼¡±Á¬½ÓÆðÀ´£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Ö±Ïßy=2x+kÓëy=6x-2µÄ½»µãµÄºá×ø±êΪ2£¬Ôòk=6£¬½»µãΪ£¨2£¬10£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Èçͼ£¬A£¬BÊÇ¡ÑOµÄÖ±¾¶£¬C¡¢DÔÚ¡ÑOÉÏ£¬$\widehat{AD}$=$\widehat{DC}$£¬Èô¡ÏDAB=58¡ã£¬Ôò¡ÏCAB=£¨¡¡¡¡£©
A£®20¡ãB£®22¡ãC£®24¡ãD£®26¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®½â·½³Ì£º
£¨1£©3x2-5x-2=0
£¨2£©x2-4x-2=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÇëÄã¹Û²ìÏÂÁи÷ʽ£¬Óú¬×ÔÈ»Êýn£¨n¨R1£©µÄ´úÊýʽÌî¿Õ£¬²¢ÔÚ±í¸ñÓÒ²à˵Ã÷ÄãµÄÀíÓÉ£¿
$\sqrt{1+\frac{1}{3}}$=2$\sqrt{\frac{1}{3}}$ÀíÓÉ£º
$\sqrt{2+\frac{1}{4}}$=3$\sqrt{\frac{1}{4}}$
$\sqrt{3+\frac{1}{5}}$=4$\sqrt{\frac{1}{5}}$
        ¡­
$\sqrt{n+\frac{1}{n+2}}$=£¨n+1£©$\sqrt{\frac{1}{n+2}}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Èçͼ£¬ÊýÖáÉϵĵãA£¬B·Ö±ð±íʾÊý-1ºÍ2£¬µãCÊÇÏ߶ÎABµÄÖе㣬ÔòµãC±íʾµÄÊýÊÇ0.5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÈçͼËùʾµÄ¼¸ºÎÌåÊÇÓÉ4¸öÃæΧ³É£¬ÃæÓëÃæÏཻ³É6ÌõÏߣ®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸