精英家教网 > 初中数学 > 题目详情
18.如图所示,两个含有30°角的完全相同的三角板ABC和DEF沿直线l滑动,下列说法错误的是(  )
A.四边形ACDF是平行四边形
B.当点E为BC中点时,四边形ACDF是矩形
C.当点B与点E重合时,四边形ACDF是菱形
D.四边形ACDF不可能是正方形

分析 根据平行四边形、矩形、菱形、正方形的判定方法一一判断即可.

解答 解:A、正确.∵∠ACB=∠EFD=30°,
∴AC∥DF,
∵AC=DF,
∴四边形AFDC是平行四边形.故正确.
B、错误.当E是BC中点时,无法证明∠ACD=90°,故错误.
C、正确.B、E重合时,易证FA=FD,∵四边形AFDC是平行四边形,
∴四边形AFDC是菱形,
D、正确.当四边相等时,∠AFD=60°,∠FAC=120°,∴四边形AFDC不可能是正方形.
故选B.

点评 本题考查平行四边形的判定、矩形的判定、菱形的判定.正方形的判定等知识,解题的关键是熟练掌握特殊四边形的判定方法,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.如图,矩形ABCD的对角线AC、BD交于点O,CE∥BD,DE∥AC.
(1)证明:四边形OCED为菱形;
(2)若AC=4,求四边形CODE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.在如图所示的单位正方形网格中
(1)将△ABC向右平移3个单位后得到△A′B′C′;
(2)连结A′A、A′B,则∠BA′A的度数是45度;
(3)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图1,在平面直角坐标系中,O是坐标原点,?ABCD的顶点A的坐标为(-2,0),点D的坐标为(0,2$\sqrt{3}$),点B在x轴的正半轴上,点E为线段AD的中点,过点E的直线l与x轴交于点F,与射线DC交于点G.
(1)求∠DCB的度数;
(2)当点F的坐标为(-4,0)时,求点G的坐标;
(3)连接OE,以OE所在直线为对称轴,△OEF经轴对称变换后得到△OEF',记直线EF'与射线DC的交点为H.
如图2,当点G在点H的左侧时,求证:△DEG∽△DHE.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,在每个小正方形的边长为1的网格中,点A、B、C、D均在格点上,点P是直线CD上的点连BP,点A′是点A关于直线BP的对称点
(Ⅰ)在图①中,当DP=1(点P在点D的左侧)时,计算DA′的值等于$\sqrt{10}$;
(Ⅱ)当DA′取值最小值时,请在如图②所示的网格中,用无刻度的直尺画出点A′,并简要说明点A′的位置如何找到的(不要求证明)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知抛物线y=a(x+1)2+k交x轴于A、B两点(点A在点B左侧),AB=4,顶点E在x轴上方,tan∠EAB=2.
(1)求抛物线的解析式;
(2)如图,P、Q为对称轴左侧抛物线上的两点(点P在点Q上方),直线PB、QB分别交对称轴于C、D两点,连PQ交x轴于M,四边形ACBD为菱形.
①若CD=AB,求S△PBQ
②探究∠PMB的大小是否改变,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图所示,在直角坐标系中,矩形ABCD的边AD在x轴上,点A在原点,AB=3,AD=5.若矩形以每秒2个单位长度沿x轴正方向作匀速运动,设运动时间为t(秒).
(1)当t=4时,写出B点的坐标;
(2)若在矩形运动的同时点P从A点出发,以每秒1个单位长度沿A-B-C-D的路线作匀速运动,当P点运动到D点时停止运动,矩形ABCD也随之停止运动.
①当t=4时,求出点P的坐标;
②若△OAP的面积为S,试求出S与t之间的函数关系式(并写出自变量t的取值范围)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如果关于x的二次函数y=x2-2x+p的图象与端点为(-1,2)和(3,5)的线段只有一个交点,则p的值可能为(  )
A.$\frac{5}{2}$B.-$\frac{3}{2}$C.3D.$\frac{3}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,已知圆O的周长与扇形OAB所对的弧长的比值为1,那么圆O的面积与扇形OAB的面积的比值为$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案