【题目】如图,△ABC为等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD于点Q,PQ=3,PE=1.
(1)求证:∠ABE=∠CAD;
(2)求BP和AD的长.
【答案】(1)见解析;(2)7
【解析】
(1)根据SAS证明△ABE与△CAD全等即可得出结论;
(2)根据含30°的直角三角形的性质解答即可.
解:(1)证明:∵△ABC为等边三角形
∴AB=CA,∠BAE=∠C=60°
在△ABE和△CAD中
∴△ABE≌△CAD(SAS)
∴∠ABE=∠CAD
(2)在△ABP中,∠BPQ=∠ABP+∠BAP
∵∠ABP=∠CAD
∴∠BPQ=∠ABP+∠BAP=∠CAD+∠BAP=∠BAC=60°
∵BQ⊥AD,PQ=3,PE=1.
∴在Rt△BPQ中,∠BPQ=60°,则∠PBQ=30°.
∴BP=2PQ=6
∴BE=BP+PE=7.
由(1)△ABE≌△CAD,
∴AD=BE=7.
科目:初中数学 来源: 题型:
【题目】小明同学从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条信息:
①c<0;②abc>0;③2a﹣b=0;④a+b+c>0;⑤当﹣3<x<1时,y<0.
你认为其中正确信息的个数有( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,AB=18,BC=12,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则下列结论正确的个数是( )
(1)CE平分∠BCD;(2)AF=CE;(3)连接DE、DF,则;(4)DP:DQ=
A.4个B.3个C.2个D.1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程组解应用题:用3辆型车和2辆型车载满货物一次可运货17吨;用2辆型车和3辆型车载满货物一次可运货18吨,某物流公司现有35吨货物,计划同时租用型车辆,型车辆,一次运完,且恰好每辆车都载满货物.
(1)1辆型车和1辆型车都载满货物一次可分别运货多少吨?
(2)若型车每辆需租金200元/次,型车每辆需租金240元/次,请你帮该物流设计最省钱的租车方案,并求出最少租车费.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:把一张给定大小的矩形卡片ABCD放在宽度为10mm的横格纸中,恰好四个顶点都在横格线上,已知α=25°,求长方形卡片的周长。(精确到1mm,参考数据: sin25°≈0,cos25°≈0.9,tan25°≈0.5).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是小亮同学设计的一个轴对称图形的一部分.其中点都在直角坐标系网格的格点上,每个小正方形的边长都等于1.
(1)请画出关于轴成轴对称图形的另一半,并写出,两点的对应点坐标.
(2)记,两点的对应点分别为,,请直接写出封闭图形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c>b;④2a+b=0;⑤=b2-4ac<0中,成立的式子有( )
A. ②④⑤ B. ②③⑤
C. ①②④ D. ①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=90°,BC=8 AB=6cm,动点P从点A开始沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是( )
A. 18cm2 B. 12cm2 C. 9cm2 D. 3cm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是的直径,是的弦,延长到点,使,连结,过点作,垂足为,交的延长线于点.
求证:为的切线;
猜想线段、、之间的数量关系,并证明你的猜想;
若,,求线段的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com