精英家教网 > 初中数学 > 题目详情
2.问题探究:已知,如图①,△AOB中,OB=3,将△AOB绕点O逆时针旋转90°得△A′OB′,连接BB′,可知BB′=3$\sqrt{2}$.
应用:如图②,已知边长为2$\sqrt{3}$的正△ABC,以AB为边向外作一个正△ABD,点P为△ABC内部一点,连接AP,并将AP顺时针旋转60°,得到线段AQ,连接DQ,BP,CP.
(1)根据题意,完成图形;
(2)求证:∠ABP=∠ADQ;
(3)求PA+PB+PC的最小值.

分析 探究:由旋转的性质,可得△BOB'是等腰直角三角形,据此求得BB'的长;
应用:(1)根据题意进行画图即可;
(2)先判定△DAQ≌△BAP(SAS),即可得出∠ABP=∠ADQ;
(3)连接PQ,当C,P,Q,D共线时,CP+PQ+QD=CD(最短),再求得CD=6,即可得出PA+PB+PC的最小值为6.

解答 解:由旋转可得,OB=OB'=3,∠BOB'=90°,
∴△BOB'是等腰直角三角形,
∴BB'=$\sqrt{{3}^{2}+{3}^{2}}$=3$\sqrt{2}$,
故答案为:3$\sqrt{2}$;

应用:(1)如右图所示:

(2)证明:∵△ABD是等边三角形,
∴∠BAD=60°,AD=AB,
∵AP顺时针旋转60°,得到线段AQ,
∴∠PAQ=60°,AQ=AP,
∴∠BAD=∠PAQ,
∴∠DAQ=∠BAP,
在△DAQ和△BAP中,
$\left\{\begin{array}{l}{AQ=AP}\\{∠DAQ=∠BAP}\\{AD=AB}\end{array}\right.$,
∴△DAQ≌△BAP(SAS),
∴∠ABP=∠ADQ;

(3)如图②,连接PQ,
∵∠PAQ=60°,AQ=AP,
∴△APQ是等边三角形,
∴AP=PQ,
由(2)可得,△DAQ≌△BAP,
∴BP=QD,
当C,P,Q,D共线时,CP+PQ+QD=CD(最短),
此时,PA+PB+PC最短,
设AB与CD交于点O,
∵AC=AD=2$\sqrt{3}$,∠CAD=120°,
∴Rt△AOC中,AO=$\frac{1}{2}$AC=$\sqrt{3}$,
∴CO=$\sqrt{3}$AO=3,
同理可得,OD=3,
∴CD=6,
∴PA+PB+PC的最小值为6.

点评 本题属于三角形综合题,主要考查了旋转的性质,等腰直角三角形的性质,等边三角形的判定与性质以及全等三角形的判定与性质的综合应用,解决问题的关键是根据全等三角形的对应边相等进行求解;解决第(3)问时,需要构造等边三角形,依据两点之间线段最短进行计算.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图,在△ABC中,AB=AC=5cm,BC+8,点P为BC边上一动点(不与点B、C重合),过点P作射线PM交AC于点M,使∠APM=∠B;
(1)求证:△ABP∽△PCM;
(2)设BP=x,CM=y,求y与x的函数解析式;
(3)当△APM为等腰三角形时,求PB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.$\frac{12}{16}$=$\frac{12÷4}{16÷()}$=$\frac{3+()}{4+4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.已知等腰三角形的两边为2和4,则它的周长为(  )
A.8B.6C.8或10D.10

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,已知∠DAE=22.5°,点C是射线AE上一点,且线段AC=3,若点M和点N分别是射线AD和线段AC上的两个动点,则MN+MC的最小值是$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.下列表格是二次函数y=ax2+bx+c的自变量x与函数值y的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是(  )
x-2.14-2.13-2.12-2.11
y=ax2+bx+c-0.03-0.01 0.020.04
A.-2.14<x<2.13B.-2.13<x<-2.12C.-2.12<x<-2.11D.-2.11<x<-2.10

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.把下列各数填入相应空格:-7,0.32,$\frac{1}{3}$,46,0,$\sqrt{8}$,$\sqrt{\frac{1}{2}}$,$\root{3}{216}$,$-\frac{π}{2}$.
①有理数集合:{-7,0.32,$\frac{1}{3}$,46,0,$\sqrt{8}$,$\sqrt{\frac{1}{2}}$,$\root{3}{216}$…}
②无理数集合:{-$\frac{π}{2}$…}
③正实数集合:{0.32,$\frac{1}{3}$,46,$\sqrt{8}$,$\sqrt{\frac{1}{2}}$,$\root{3}{216}$…}
④分数集合:{0.32,$\frac{1}{3}$…}.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知:如图1,点P在线段AB上(AP>PB),C、D、E分别是AP、PB、AB的中点,正方形CPFG和正方形PDHK在直线AB同侧.
(1)求证:GC=ED
(2)求证:△EHG是等腰直角三角形;
(3)若将图1中的射线PB连同正方形PDHK绕点P顺时针旋转一个角度后,其它已知条件不变,如图2,判断△EHG还是等腰直角三角形吗?若是,给予证明;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,已知等边△ABC边长为8 cm,D为BC中点,E为直线AD上一动点,将EC绕着点E顺时针旋转60°得到线段EF,连接DF,则线段DF最小值为2.

查看答案和解析>>

同步练习册答案