如图,梯形ABCD中,AD∥BC,BC=20cm,AD=10cm,现有两个动点P、Q分别从B、D两点同时出发,点P以每秒2cm的速度沿BC向终点C移动,点Q以每秒1cm的速度沿DA向终点A移动,线段PQ与BD相交于点E,过E作EF∥BC交CD于点F,射线QF交BC的延长线于点H,设动点P、Q移动的时间为t(单位:秒,0<t<10)。
1.当t为何值时,四边形PCDQ为平行四边形?
2.在P、Q移动的过程中,线段PH的长是否发生改变?如果不变,求出线段PH的长;如果改变,请说明理由。
1.∵AD∥BC,BC=20cm,AD=10cm,点P、Q分别从B、D两点同时出发,点P以每秒2cm的速度沿BC向终点C移动,点Q以每秒1cm的速度沿DA向终点A移动,
∴DQ=t,PC=20-2t,
∵若四边形PCDQ为平行四边形,则DQ=PC,
∴20-2t=t,解得:t= ;
2.线段PH的长不变,
∵AD∥BH,P、Q两点的速度比为2:1,∴QD:BP=1:2,
∴QE:EP=ED:BE=1:2,
∵EF∥BH,∴ED:DB=EF:BC=1:3,
∵BC=20,∴EF= ,∴: = ,∴PH=20cm.
【解析】(1)平行四边形的两组对边分别相等;
(2)求得PH的长是一个定值,即长度不变。
科目:初中数学 来源: 题型:
| ||
10 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com