精英家教网 > 初中数学 > 题目详情
如图,已知直线l1∥l2,线段AB在直线l1上,BC垂直于l1交l2于点C,且AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2、l1于点D、E(点A、E位于点B的两侧),满足BP=BE,连接AP、CE.
(1)求证:△ABP≌△CBE;
(2)连结AD、BD,BD与AP相交于点F.如图2.
①当=2时,求证:AP⊥BD;
②当=n(n>1)时,设△PAD的面积为S1,△PCE的面积为S2,求的值.
(1)证明见解析
?证明见解析
?n+1

试题分析:(1)由BC垂直于l1可得∠ABP=∠CBE,由SAS即可证明;
(2)①延长AP交CE于点H,由(1)及已知条件可得AP⊥CE,△CPD∽△BPE,从而有DP=PE,得出四边形BDCE是平行四边形,从而可得到CE//BD,问题得证;
②由已知条件分别用S表示出△PAD和△PCE的面积,代入即可.
试题解析:(1)∵BC⊥直线l1
∴∠ABP=∠CBE,
在△ABP和△CBE中

∴△ABP≌△CBE(SAS);
(2)①延长AP交CE于点H,

∵△ABP≌△CBE,
∴∠PAB=∠ECB,
∴∠PAB+∠AEE=∠ECB+∠AEH=90°,
∴AP⊥CE,
=2,即P为BC的中点,直线l1//直线l2
∴△CPD∽△BPE,
==
∴DP=PE,
∴四边形BDCE是平行四边形,
∴CE//BD,
∵AP⊥CE,
∴AP⊥BD;
②∵=N
∴BC=n•BP,
∴CP=(n﹣1)•BP,
∵CD//BE,
∴△CPD∽△BPE,
==n﹣1,
即S2=(n﹣1)S,
∵SPAB=SBCE=n•S,
∴SPAE=(n+1)•S,
==n﹣1,
∴S1=(n+1)(n﹣1)•S,
==n+1.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,连接OD,过点D作⊙O的切线,交AB延长线于点E,交AC于点F.
(1)求证:OD∥AC;
(2)当AB=10,时,求AF及BE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,AB=AC,作以AB为直径的⊙O与边BC交于点D,过点D作⊙O的切线,分别交AC、AB的延长线于点E、F.
(1)求证:EF⊥AC;
(2)若BF=2,CE=1.2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

正方形网格中有一条简笔画“鱼”,请你以点O为位似中心放大,使新图形与原图形的对应线段的比是2:1(不要求写作法).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体.如图:若舞台AB长为20m,试计算主持人应走到离A点至少______m处.(结果精确到0.1m)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列每组中的两个图形形状相同的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,梯形ABCD中AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC与△DCA的面积比为
A.2:3B.2:5C.4:9D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

为了测量校园水平地面上一棵树的高度,数学兴趣小组利用一组标杆、皮尺,设计了如图所示的测量方案.已知测量同眼睛A标杆顶端F树的顶端E同一直线上,此同学眼睛距地面1.6m标杆长为3.3m且BC=1m,CD=4m,则ED=             m.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=__________.

查看答案和解析>>

同步练习册答案