15£®Èçͼ¢Ù£¬A£¬D·Ö±ðÔÚxÖᣬyÖáÉÏ£¬AB¡ÎyÖᣬDC¡ÎxÖᣮµãP´ÓµãD³ö·¢£¬ÒÔ1¸öµ¥Î»³¤¶È/ÃëµÄËٶȣ¬ÑØÎå±ßÐÎOABCDµÄ±ßÔÈËÙÔ˶¯Ò»ÖÜ£¬Èô˳´ÎÁ¬½ÓP£¬O£¬DÈýµãËùΧ³ÉµÄÈý½ÇÐεÄÃæ»ýΪS£¬µãPÔ˶¯µÄʱ¼äΪtÃ룬ÒÑÖªSÓëtÖ®¼äµÄº¯Êý¹ØϵÈçͼ¢ÚÖÐÕÛÏßOEFGHMËùʾ£®
£¨1£©Í¼¢ÙÖеãBµÄ×ø±êΪ£¨8£¬2£©£»µãCµÄ×ø±êΪ£¨5£¬6£©£»
£¨2£©Çóͼ¢ÚÖÐGHËùÔÚÖ±ÏߵĽâÎöʽ£»
£¨3£©ÊÇ·ñ´æÔÚµãP£¬Ê¹¡÷OCPµÄÃæ»ýΪÎå±ßÐÎOABCDµÄÃæ»ýµÄ$\frac{1}{3}$£¿Èô´æÔÚ£¬ÇëÇó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÓÚµãP´ÓµãD³ö·¢£¬¸ù¾Ýͼ¢ÚÖÐSÓëtµÄͼÏó¿ÉÖª£¬µãP°´Ë³Ê±Õë·½ÏòÑØÎå±ßÐÎOABCDµÄ±ß×÷ÔÈËÙÔ˶¯£¬ÓÖÔ˶¯ËÙ¶ÈΪ1¸öµ¥Î»³¤¶È/Ã룬ËùÒÔDC=5£¬BC=5£¬AB=2£¬AO=8£¬OD=6£¬Óɴ˵õ½µãCµÄ×ø±ê£¬ÓÉͼ¢Ú20-12=8£¬µÃ³öBµÄ×ø±ê£»
£¨2£©ÏÈÇó³öµãG×ø±ê£¬ÔÙÓôý¶¨ÏµÊý·¨¼´¿ÉÇó³ö£»
£¨3£©ÏÈÇó³öÎå±ßÐÎOABCDµÄÃæ»ýºÍ¡÷OCPµÄÃæ»ý£¬ÔÙ·ÖÀàÌÖÂÛÈýÖÖÇé¿ö£º
¢Ùµ±PÔÚCDÉÏʱ£¬CP=5-t£¬ÓÉ¡÷OCPµÄÃæ»ýµÃ³ötµÄÖµ£¬¼´¿ÉµÃ³öPµÄ×ø±ê£»
¢Úµ±PÔÚOAÉÏʱ£¬ÉèP£¨x£¬0£©£¬ÓÉ¡÷OCPµÄÃæ»ýµÃ³öxµÄÖµ£¬¼´¿ÉµÃ³öPµÄ×ø±ê£»
¢Ûµ±PÔÚBCÉÏʱ£¬¹ýµã£¨$\frac{14}{3}$£¬0£©×÷OCƽÐÐÏßl½»BCÓÚP£¬Çó³öÖ±ÏßOCºÍ¹ýµã£¨$\frac{14}{3}$£¬0£©ÓëOCƽÐеÄÖ±ÏßlÒÔ¼°Ö±ÏßBCµÄ½âÎöʽ£¬lÓëBCµÄ½»µã¼´ÎªP£¬½â·½³Ì×é¼´¿É£®

½â´ð ½â£º£¨1£©ÓÉÌâÒ⣬¿ÉÖªµãPµÄÔ˶¯Â·ÏßÊÇ£ºD¡úC¡úB¡úA¡úO¡úD£¬
DC=5£¬BC=10-5=5£¬AB=12-10=2£¬AO=20-12=8£¬OD=26-20=6£¬
¡àµãCµÄ×ø±êΪ£¨5£¬6£©£»
ÓÉͼ¢Ú£º20-12=8£¬
¡àµãBµÄ×ø±êΪ£¨8£¬2£©£»
£¨2£©ÉèGHµÄ½âÎöʽΪy=kx+b£¬
¡ßµ±µãPÔ˶¯µ½Bʱ£¬S=$\frac{1}{2}$¡Á6¡Á8=24£¬
¡àG£¨12£¬24£©£¬
°ÑµãG£¨12£¬24£©£¬H£¨20£¬0£©´úÈëµÃ£º$\left\{\begin{array}{l}{12k+b=24}\\{20k+b=0}\end{array}\right.$£¬
½âµÃ£ºk=-3£¬b=60£¬
¡àͼ¢ÚÖÐGHËùÔÚÖ±ÏߵĽâÎöʽΪ£ºy=-3x+60£»
£¨3£©´æÔÚµãP£¬Ê¹¡÷OCPµÄÃæ»ýΪÎå±ßÐÎOABCDµÄÃæ»ýµÄ$\frac{1}{3}$£»·ÖÈýÖÖÇé¿ö£º
×÷CM¡ÍOAÓÚM£¬Èçͼ¢ÙËùʾ£º
ÔòÎå±ßÐÎOABCDµÄÃæ»ý=¾ØÐÎODCMµÄÃæ»ý+ÌÝÐÎABCMµÄÃæ»ý=5¡Á6+$\frac{1}{2}$£¨2+6£©£¨8-5£©=42£¬
¡÷OCPµÄÃæ»ý=$\frac{1}{3}$¡Á42=14£¬
·ÖÈýÖÖÇé¿ö£º
¢ÙÓÉͼÏóµÃ£ºµ±PÔÚCDÉÏʱ£¬CP=5-t£¬¡÷OCPµÄÃæ»ý=$\frac{1}{2}$£¨5-t£©¡Á6=14£¬
½âµÃ£ºt=$\frac{1}{3}$£¬
¡àP£¨$\frac{1}{3}$£¬6£©£»
¢ÚÓɢٵ㬵±PÔÚOAÉÏʱ£¬ÉèP£¨x£¬0£©£¬
Ôò¡÷OCPµÄÃæ»ý=$\frac{1}{2}$x¡Á6=14£¬
½âµÃ£ºx=$\frac{14}{3}$£¬
¡àP£¨$\frac{14}{3}$£¬0£©£»
¢Ûµ±PÔÚBCÉÏʱ£¬¹ýµã£¨$\frac{14}{3}$£¬0£©×÷OCƽÐÐÏßl½»BCÓÚP£»Èçͼ¢ÙËùʾ£º
¡ßÖ±ÏßOCΪy=$\frac{6}{5}$x£¬ÉèÖ±ÏßlµÄ½âÎöʽΪy=$\frac{6}{5}$x+b£¬
°Ñµã£¨$\frac{14}{3}$£¬0£©´úÈëµÃ£ºb=-$\frac{28}{5}$£¬
¡àlµÄ½âÎöʽΪ£ºy=$\frac{6}{5}$x-$\frac{28}{5}$£»
ÉèÖ±ÏßBCµÄ½âÎöʽΪy=ax+c£¬
°ÑB£¨8£¬2£©£¬C£¨5£¬6£©´úÈëµÃ£º$\left\{\begin{array}{l}{8k+b=2}\\{5k+b=6}\end{array}\right.$£¬
½âµÃ£ºk=-$\frac{4}{3}$£¬b=$\frac{38}{3}$£¬
¡àÖ±ÏßBCµÄ½âÎöʽΪ£ºy=-$\frac{4}{3}$x+$\frac{38}{3}$£»
½â·½³Ì×é$\left\{\begin{array}{l}{y=\frac{6}{5}x-\frac{28}{5}}\\{y=-\frac{4}{3}x+\frac{38}{3}}\end{array}\right.$µÃ£º$\left\{\begin{array}{l}{x=\frac{137}{19}}\\{y=\frac{174}{57}}\end{array}\right.$£¬
¡àP£¨$\frac{137}{19}$£¬$\frac{174}{57}$£©£»µ±PÔÚODÉÏʱ£¬5OP=14¡Á2£¬OP=5.6£¬
¡àP£¨0£¬5.6£©
×ÛÉÏËùÊö£ºµãPµÄ×ø±êΪ£¨$\frac{1}{3}$£¬6£©£¬»ò£¨$\frac{14}{3}$£¬0£©£¬»ò£¨$\frac{137}{19}$£¬$\frac{174}{57}$£©£¬»ò£¨0.5.6£©£®

µãÆÀ ±¾ÌâÊÇÒ»´Îº¯Êý×ÛºÏÌ⣬¿¼²éÁ˵ãµÄ×ø±ê¡¢Óôý¶¨ÏµÊý·¨ÇóÒ»´Îº¯ÊýµÄ½âÎöʽ¡¢Í¼ÐÎÃæ»ýµÄ¼ÆË㣬½»µã×ø±êµÄÇ󷨵È֪ʶ£»±¾ÌâÄѶȽϴó£¬×ÛºÏÐÔÇ¿£¬ÌرðÊÇ£¨3£©ÖÐÐè·ÖÀàÌÖÂÛ£¬Í¨¹ý×÷¸¨ÖúÏß²ÅÄܵóö½á¹û£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®¼ÆË㣺$\frac{1}{3}$+$\frac{1}{2}$¡Á$\frac{1}{4}$+$\frac{1}{2}$¡Á$\frac{1}{3}$¡Á$\frac{1}{5}$+$\frac{1}{2}$¡Á$\frac{1}{3}$¡Á$\frac{1}{4}$¡Á$\frac{1}{6}$+$\frac{1}{2}$¡Á$\frac{1}{3}$¡Á$\frac{1}{4}$¡Á$\frac{1}{5}$¡Á$\frac{1}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®½âÏÂÁв»µÈʽ×飺
£¨1£©$\left\{\begin{array}{l}{1+2x£¾3+x}\\{5x£¼4x-1}\end{array}\right.$
£¨2£©$\left\{\begin{array}{l}{2-x£¼-1}\\{3£¼x-1}\end{array}\right.$
£¨3£©$\left\{\begin{array}{l}{\frac{1}{2}+\frac{2x}{3}£¼\frac{-x}{2}+\frac{5}{3}}\\{3£¨x-1£©£¼x-5}\end{array}\right.$
£¨4£©$\left\{\begin{array}{l}{\frac{1}{2}£¨x+3£©£¼2}\\{\frac{x+2}{2}£¾\frac{x+3}{3}}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Èçͼ£¬±ß³¤Îª5µÄµÈ±ßÈý½ÇÐÎABCÖУ¬MÊǸßCHËùÔÚÖ±ÏßÉϵÄÒ»¸ö¶¯µã£¬Á¬½ÓMB£¬½«Ï߶ÎBMÈƵãBÄæʱÕëÐýת60¡ãµÃµ½BN£¬Á¬½ÓHN£®ÔòÔÚµãMÔ˶¯¹ý³ÌÖУ¬Ï߶ÎHN³¤¶ÈµÄ×îСֵÊÇ1.25£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬µãA£¨0£¬2£©£¬ÔÚxÖáÉÏÈÎÈ¡Ò»µãM£¬Á¬½ÓAM£¬×÷AMµÄ´¹Ö±Æ½·ÖÏßl1£¬¹ýµãM×÷xÖáµÄ´¹Ïß
l2£®l1Óël2½»ÓÚµãP£®ÉèPµãµÄ×ø±êΪ£¨x£¬y£©£¬ÄÇôx£¬yÂú×ãµÄ¹ØϵʽΪ£¨¡¡¡¡£©
A£®y=$\frac{{x}^{2}}{4}$+1B£®y=x2+2x+1C£®y=2x2+1D£®y=x2+1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Èçͼ£¬?ABCDÖУ¬AC¡ÍAB£¬AB=3cm£¬BC=5cm£¬µãEΪABÉÏÒ»µã£¬ÇÒAE=$\frac{1}{3}$AB£®µãP´ÓBµã³ö·¢£¬ÒÔ1cm/sµÄËÙ¶ÈÑØBC¡úCD¡úDAÔ˶¯ÖÁAµãÍ£Ö¹£®Ôòµ±Ô˶¯Ê±¼äΪ$\frac{5}{3}$£¬2£¬$\frac{12}{5}$£¬$\frac{{68-2\sqrt{21}}}{5}$Ãëʱ£¬¡÷BEPΪµÈÑüÈý½ÇÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Èçͼ£¬ÔÚƽÐÐËıßÐÎABCDÖУ¬AB=8cm£¬AD=4cm£¬¡ÏA=60¡ã£¬¶¯µãPÒÔ2cm/sµÄËٶȴÓDÏòµãAÒƶ¯£¬¶¯µãQÒÔ4cm/sµÄËٶȴӵãAÏòµãBÒƶ¯£®Èç¹ûP¡¢QÁ½µã·Ö±ð´ÓD¡¢Aͬʱ³ö·¢£¬µ±Ò»·½µ½´ïÖÕµãʱ¶¼Ëæֹ֮ͣÔ˶¯£¬ÄÇô¾­¹ý1Ã룬Îå±ßÐÎPQBCDÃæ»ý×îС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªy¡Ù0£¬ÇÒ2x2-9xy+8y2=0£¬Ôò$\frac{4{x}^{2}-8xy-4{y}^{2}}{{x}^{2}+xy+3{y}^{2}}$µÄֵΪ$\frac{20+20\sqrt{17}}{91+11\sqrt{17}}$»ò$\frac{20-20\sqrt{17}}{91-11\sqrt{17}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®¼ÆË㣺$\sqrt{8}$+£¨$\sqrt{2}$+1£©0-4cos45¡ã+£¨$\frac{1}{2}$£©-1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸