精英家教网 > 初中数学 > 题目详情
5.如图,AD∥BC,AB∥DC,AB=4,∠ADE=150°,那么∠A=120°时,四边形ABCD是菱形,且BD=4$\sqrt{3}$.

分析 首先根据菱形的性质及外角的性质求得∠ADB=∠ABD,从而求得∠A,然后根据特殊角及AB的长即可求得对角线BD的长.

解答 解:∵AD∥BC,AB∥DC,
∴四边形ABCD是平行四边形,
∵∠ADE=150°,
∴∠ADB=30°,
当四边形ABCD是菱形时,AB=AD,
则∠ADB=∠ABD=30°,
此时∠A=120°,
∵AB=4,
∴BD=4$\sqrt{3}$,
故答案为:120°,4$\sqrt{3}$.

点评 本题考查了菱形的判定与性质,解题的关键是了解菱形的四条边相等且为特殊的平行的四边形,难度不大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.某地由于突降强降导致强大泥石流,给当地人民造成了巨大损失,某救援队在组长的带领下原计划10天至少要挖掘600立方米的泥石流,在前两天共完成了120立方米的挖掘任务后,接到指示需要提前两天完成挖掘任务,接到指示需要提前两天完成挖掘任务,问以后几天内,平均每天至少要挖掘多少立方米的泥石流.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.解不等式:$\frac{x+1}{4}$≥$\frac{4x-1}{12}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.有一块三角形ABC铁片,已知最长边BC=12cm,高AD=8cm,要把它加工成一个矩形铁片,使矩形的一边在BC上,其余两个顶点分别在三角形另外两条边上,且矩形的长是宽的2倍,求加工成的贴片面积?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.一辆汽车开往距离出发地180千米的目的地,按照计划的速度匀速行驶60千米后,再以原来速度的1.5倍匀速行驶,结果比原计划提前40分钟到达目的地,求原计划的行驶速度.
(1)审:审清题意,找出已知量和未知量;
(2)设:设未知数,设原计划行驶的速度为x千米/时,则行驶60千米后的速度1.5x千米/时,;
(3)列:根据等量关系,列分式方程为$\frac{180}{x}$=$\frac{60}{x}$+$\frac{180-60}{1.5x}$+$\frac{40}{60}$;
(4)解:解分式方程,得x=60;
(5)检:检验所求的解是否为分式方程的解,并检验分式方程的解是否符合问题的实际意义.
经检验:60是原方程的解,且符合题意;
(6)答:写出答案(不要忘记单位)
答:原计划的行驶速度为1.5x千米/时,千米/时.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知等腰三角形中有两条边长的比为2:3,第三边长为30,求这个等腰三角形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知:21-20=20
22-21=21
23-22=22

(1)探索上式中式子的规律,试写出第n个等式,并说明第n个等式成立;
(2)计算:20+21+22+…+2100
(3)仿照此比例的求和方法,求:1+3+5+…+(2n-1).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.解不等式组$\left\{\begin{array}{l}{3-x≥0}\\{\frac{4}{3}x+\frac{3}{2}>-\frac{x}{6}}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.点P(-1,2)关于x轴对称的点的坐标是(  )
A.(-1,2)B.(-2,1)C.(-1,-2)D.(1,2)

查看答案和解析>>

同步练习册答案