分析 (1)只要证明OE垂直BC即可得出BC是小圆的切线,即与小圆的关系是相切.
(2)利用全等三角形的判定得出Rt△OAD≌Rt△OEB,从而得出EB=AD,从而得到三者的关系是前两者的和等于第三者.
(3)根据大圆的面积减去小圆的面积即可得到圆环的面积计算即可.
解答 解:(1)BC所在直线与小圆相切.
理由如下:
过圆心O作OE⊥BC,垂足为E;
∵AC是小圆的切线,AB经过圆心O,
∴OA⊥AC;
又∵CO平分∠ACB,OE⊥BC,
∴OE=OA,
∴BC所在直线是小圆的切线.
(2)AC+AD=BC.
理由如下:
连接OD.
∵AC切小圆O于点A,BC切小圆O于点E,
∴CE=CA;
∵在Rt△OAD与Rt△OEB中,
$\left\{\begin{array}{l}{OA=OE}\\{OD=OB}\end{array}\right.$,
∴Rt△OAD≌Rt△OEB(HL),
∴EB=AD;
∵BC=CE+EB,
∴BC=AC+AD.
(3)∵∠BAC=90°,AB=16cm,BC=20cm,
∴AC=12cm;
∵BC=AC+AD,
∴AD=BC-AC=8cm,
∵圆环的面积为:S=π(OD)2-π(OA)2=π(OD2-OA2),
又∵OD2-OA2=AD2,
∴S=82π=64π(cm2).
点评 本题考查了切线的判定,全等三角形的判定等知识点.要证某线是圆的切线,①已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可,②所证切线与圆的交点不明确,可以过圆心作该直线的垂线段,证明垂线段的长等于半径.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com