科目:初中数学 来源: 题型:
点A(-1,0)B(4,0)C(0,2)是平面直角坐标系上的三点。
① 如图1先过A、B、C作△ABC,然后在在轴上方作一个正方形D1E1F1G1,
使D1E1在AB上, F1、G1分别在BC、AC上
② 如图2先过A、B、C作圆⊙M,然后在轴上方作一个正方形D2E2F2G2,
使D2E2在轴上 ,F2、G2在圆上
③ 如图3先过A、B、C作抛物线,然后在轴上方作一个正方形D3E3F3G3,
使D3E3在轴上, F3、G3在抛物线上
请比较 正方形D1E1F1G1 , 正方形D2E2F2G2 , 正方形D3E3F3G3 的面积大小
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,已知⊙O的半径为R,C、D是直径AB的同侧圆周上的两点,弧AC的度数为100°弧BC=2弧BD,动点P在线段AB上,则PC+PD的最小值为 ( )(原创)
A.R B.R C.R D.R
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,抛物线y=x2﹣x与x轴交于O,A两点.半径为1的动圆(⊙P),圆心从O点出发沿抛物线向靠近点A的方向移动;半径为2的动圆(⊙Q),圆心从A点出发沿抛物线向靠近点O的方向移动.两圆同时出发,且移动速度相等,当运动到P,Q两点重合时同时停止运动.设点P的横坐标为t.若⊙P与⊙Q相离,则t的取值范围是_____ ____ .
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在平面直角坐标系中,坐标原点为O,A点坐标为(-4,0),B点坐标为(1,0),以AB的中点P为圆心,AB为直径作⊙P与y轴的负半轴交于点C.
(1)求经过A、B、C三点的抛物线对应的函数表达式;
(2)设M为(1)中抛物线的顶点,试说明直线MC与⊙P的位置关系,并证明你的结论;
(3)在第二象限中是否存在的一点Q,使得以A,O,Q为顶点的三角形与△OBC相似。若存在,请求出所有满足的Q点坐标;若不存在,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com