精英家教网 > 初中数学 > 题目详情
27、观察并探求下列各问题,写出你所观察得到的结论.
(1)如图①,在△ABC中,P为边BC上一点,则BP+PC
AB+AC(填“>”、“<”或“=”)
(2)将(1)中点P移到△ABC内,得图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由.
(3)将(2)中点P变为两个点P1、P2得图③,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.
分析:(1)根据三角形中两边之和大于第三边,即可得出结果,
(2)可延长BP交AC与M,根据两边之和大于第三边,即可得出结果,
(3)分别延长BP1、CP2交于M,再根据(2)中得出的BM+CM<AB+AC,可得出BP1+P1P2+P2C<BM+CM<AB+AC,即可得出结果.
解答:解:(1)BP+PC<AB+AC,理由:三角形两边之和大于第三边,
(2)△BPC的周长<△ABC的周长.理由:
如图,延长BP交AC于M,在△ABM中,BP+PM<AB+AM,在△PMC中,PC<PM+MC,两式相加得BP+PC<AB+AC,于是得:△BPC的周长<△ABC的周长,
(3)四边形BP1P2C的周长<△ABC的周长,理由:
如图,分别延长BP1、CP2交于M,由(2)知,BM+CM<AB+AC,又P1P2<P1M+P2M,
可得,BP1+P1P2+P2C<BM+CM<AB+AC,可得结论.
点评:本题考查了比较线段的长短常常利用三角形的三边关系以及不等式的性质,通过作辅助线进行解答,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

32、观察并探求下列各问题,写出你所观察得到的结论,并说明理由.
(1)如图,△ABC中,P为边BC上一点,试观察比较BP+PC与AB+AC的大小,并说明理由.

(2)将(1)中点P移至△ABC内,得图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由.

(3)将(2)中点P变为两个点P1、P2得下图,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.

(4)将(3)中的点P1、P2移至△ABC外,并使点P1、P2与点A在边BC的异侧,且∠P1BC<∠ABC,∠P2CB<∠ACB,得图,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.

(5)若将(3)中的四边形BP1P2C的顶点B、C移至△ABC内,得四边形B1P1P2C1,如图⑤,试观察比较四边形B1P1P2C1的周长与△ABC的周长的大小,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

观察并探求下列各问题,写出你所观察得到的结论.
(1)如图①,在△ABC中,P为边BC上一点,则BP+PC______AB+AC(填“>”、“<”或“=”)
(2)将(1)中点P移到△ABC内,得图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由.
(3)将(2)中点P变为两个点P1、P2得图③,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

观察并探求下列各问题,写出你所观察得到的结论,并说明理由.
(1)如图,△ABC中,P为边BC上一点,试观察比较BP+PC与AB+AC的大小,并说明理由.

(2)将(1)中点P移至△ABC内,得图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由.

(3)将(2)中点P变为两个点P1、P2得下图,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.

(4)将(3)中的点P1、P2移至△ABC外,并使点P1、P2与点A在边BC的异侧,且∠P1BC<∠ABC,∠P2CB<∠ACB,得图,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.

(5)若将(3)中的四边形BP1P2C的顶点B、C移至△ABC内,得四边形B1P1P2C1,如图⑤,试观察比较四边形B1P1P2C1的周长与△ABC的周长的大小,并说明理由.

查看答案和解析>>

同步练习册答案