精英家教网 > 初中数学 > 题目详情
如图,已知直线y=x+4与两坐标轴分别交于A、B两点,⊙C的圆心坐标为 (2,O),半径为2,若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值和最大值分别是      
8﹣2和8+2
首先由一次函数解析式求出OA、OB的长,而△ABE中,BE边上的高是OA,且OA为定值,所以求△ABE面积的最小值和最大值,转化为求BE的最小值和最大值。过点A作⊙C的两条切线AD、AD′,当动点运动到D点时,BE最小,即△ABE面积最小;当动点运动到D′点时,BE最大,即△ABE面积最大。最后根据比例求出BE 、BE′的值,进而求出△ABE面积的最小值和最大值.
解:由y=x+4得:
当x=0时,y=4,当y=0时,x=﹣4,
∴OA=4,OB=4,
∵△ABE的边BE上的高是OA,
∴△ABE的边BE上的高是4,
∴要使△ABE的面积最大或最小,只要BE取最大值或最小值即可,
过A作⊙C的两条切线,如图,

当动点运动到D点时,BE最小,即△ABE面积最小;
当动点运动到D′点时,BE最大,即△ABE面积最大;
∵x轴⊥y轴,OC为半径,
∴EE′是⊙C切线,
∵AD′是⊙C切线,
∴OE′=E′D′,
设E′O=E′D′=x,
∵AC=4+2=6,CD′=2,AD′是切线,
∴∠AD′C=90°,由勾股定理得:AD′=4
∴sin∠CAD′==
=
解得:x=
∴BE′=4+,BE=4﹣
∴△ABE的最小值是×(4﹣)×4=8﹣2
最大值是:×(4+)×4=8+2
故答案为:8﹣2和8+2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

甲、乙两车分别从A地将一批物品运往B地,再返回A地,如图表示两车离A地的距离s(千米)随时间t(小时)变化的图象,已知乙车到达B地后以30千米/小时的速度返回.请根据图象中的数据回答:
(1)甲车出发多长时间后被乙车追上?
(2)甲车与乙车在距离A地多远处迎面相遇?
(3)甲车从B地返回的速度多大时,才能比乙车先回到A地?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知等腰△AOB放置在平面直角坐标系xOy中, OA=OB,点B的坐标为(3,4) .
(1)求直线AB的解析式;
(2)问将等腰△AOB沿x轴正方向平移多少个单位,能使点B落在反比例函数 (x>0)的图象上.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若直线y=2x+b+c与x轴交于点(-3,0),则关于x的方程2x+b+c=0的解是       .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

许多家庭以燃气作为烧水做饭的燃料,节约用气是我们日常生活中非常现实的问题.某款燃气灶旋转位置从0度到90度(如图),燃气关闭时,燃气灶旋转的位置为0度,旋转角度越大,燃气流量越大,燃气开到最大时,旋转角度为90度.为测试燃气灶旋转在不同位置上的燃气用量,在相同条件下,选择燃气灶旋钮的5个不同位置上分别烧开一壶水(当旋钮角度太小时,其火力不能够将水烧开,故选择旋钮角度x度的范围是18≤x≤90),记录相关数据得到下表:
旋钮角度(度)
20
50
70
80
90
所用燃气量(升)
 73
 67
 83
 97
115
 
(1)请你从所学习过的一次函数、反比例函数和二次函数中确定哪种函数能表示所用燃气量y升与旋钮角度x度的变化规律?说明确定是这种函数而不是其它函数的理由,并求出它的解析式;
(2)当旋钮角度为多少时,烧开一壶水所用燃气量最少?最少是多少?
(3)某家庭使用此款燃气灶,以前习惯把燃气开到最大,现采用最节省燃气的旋钮角度,每月平均能节约燃气10立方米,求该家庭以前每月的平均燃气量.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.

(1)求一次函数与反比例函数的解析式;
(2)求△ABC的面积?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在同一直角坐标系中,若正比例函数y=k1x的图象与反比例函数y=的图象没有公共点,则(  )
A.k1+k2<0B.k1+k2>0C.k1k2<0D.k1k2>0

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线,相交于点轴的交点坐标为轴的交点坐标为,结合图象解答下列问题:(每小题4分,共8分)
(1)求直线表示的一次函数的表达式;
(2)当为何值时,,表示的两个一次函数值都大于.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知抛物线y1=-2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2,例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:

①当x>0时,y1>y2
②当x<0时,x值越大,M值越小;
③使得M大于2的x值不存在;
④使得M=1的x值是-.
其中正确的是
A.①② B.①④C.②③D.③④

查看答案和解析>>

同步练习册答案