如图,已知二次函数的图象与轴交于A、B两点,与轴交于点P,顶点为C(1,-2).
(1)求此函数的关系式;
(2)作点C关于轴的对称点D,顺次连接A、C、B、D.若在抛物线上存在点E,使直线PE将四边形ABCD分成面积相等的两个四边形,求点E的坐标;
(3)在(2)的条件下,抛物线上是否存在一点F,使得△PEF是以P为直角顶点的直角三角形?若存在,求出点F的坐标及△PEF的面积;若不存在,请说明理由.
1)∵的顶点为C(1,-2),
∴,. ————————————————2
2)设直线PE对应的函数关系式为.由题意,四边形ACBD是菱形.
故直线PE必过菱形ACBD的对称中心M. ————————————————1
由P(0,-1),M(1,0),得.从而, ————————2
设E(,),代入,得.
解之得,,根据题意,得点E(3,2) —————————2
3)假设存在这样的点F,可设F(,).过点F作FG⊥轴,垂足为点G.
在Rt△POM和Rt△FGP中,∵∠OMP+∠OPM=90°,∠FPG+∠OPM=90°,
∴∠OMP=∠FPG,又∠POM=∠PGF,∴△POM∽△FGP.
∴.又OM=1,OP=1,∴GP=GF,即.
解得,,根据题意,得F(1,-2).
故点F(1,-2)即为所求. ——————————————————3
. ————————2
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
6 |
7 |
6 |
7 |
查看答案和解析>>
科目:初中数学 来源: 题型:
3 |
3 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
3 |
1 |
3 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com