精英家教网 > 初中数学 > 题目详情

【题目】已知:在中,边上的中线,点的中点;过点,交的延长线于,连接.

(1)求证:四边形是平行四边形;

(2)当分别满足什么条件时,四边形是菱形;四边形是矩形,并说明理由.

【答案】(1)见详解;(2)①当时,四边形是矩形;②当,四边形是菱形.

【解析】

1)先证明,然后由全等三角形的性质,得到BD=CD=AF,即可证明结论成立;

2)①根据矩形的判定定理即可得到结论;②根据菱形的判定定理即可得到结论.

(1)证明:

,∴

又∵

∴四边形为平行四边形;

2时,四边形是矩形;

由(1)可知,

∴四边形ABDF是平行四边形,

AB=DF

AB=AC=DF

∴平行四边形ADCF是矩形;

,四边形是菱形;

由①可知,四边形ABDF是平行四边形,

ABDF

,即ABAC

DFAC

∴平行四边形ADCF是菱形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出(

A.直角三角形的面积

B.最大正方形的面积

C.较小两个正方形重叠部分的面积

D.最大正方形与直角三角形的面积和

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学初一年级有350名同学去春游,已知2A型车和1B型车可以载学生100人,1A型车和2B型车可以载学生110.

(1)AB型车每辆可分别载学生多少人?

(2)若计划租用A型车辆,租用B型车辆,请你设计租车方案,能一次运送所有学生,且恰好每辆车都坐满.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1 , y2 , 0的大小关系是( )
A.0<y1<y2
B.y1<0<y2
C.y1<y2<0
D.y2<0<y1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点DE分别是∠B的两边BCBA上的点,∠DEB2BFBA上一点.

1)如图①,若DF平分∠BDE,求证:BDDE+EF

2)如图②,若DFDBE的外角平分线,BDDEEF三者有怎样的数量关系?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1 , y1),P2(x2 , y2),可通过构造直角三角形利用图1得到结论:P1P2= 他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:x= ,y=

(1)请你帮小明写出中点坐标公式的证明过程;
(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为
②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标:
(3)如图3,点P(2,n)在函数y= x(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的外角,的角平分线交于点.

1)若,则

2)探索的数量关系,并说明理由;

3)若,求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】周末,小李8时骑自行车从家里出发,到野外郊游,16时回到家里.他离家的距离s(千米)与时间t()之间的关系可以用图中的折线表示.现有如下信息:

①小李到达离家最远的地方是14时;

②小李第一次休息时间是10时;

11时到12时,小李骑了5千米;

④返回时,小李的平均速度是10千米/.

其中,正确的有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD的顶点为A12),B(﹣12),C,(﹣1,﹣2),D1,﹣2),点M和点N同时从E点出发,沿四边形的边做环绕匀速运动,M点以1单位/s的速度做逆时针运动,N点以2单位/s的速度做顺时针运动,则点M和点N2019次相遇时的坐标为_____

查看答案和解析>>

同步练习册答案