【题目】(8分)某园林部门决定利用现有的349盆甲种花卉和295盆乙种花卉搭配A、B两种园艺造型共50个,摆放在迎宾大道两侧.已知搭配一个A种造型需甲种花卉8盆,乙种花卉4盆;搭配一个B种造型需甲种花卉5盆,乙种花卉9盆.
(l)某校2015届九年级某班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;
(2)若搭配一个A种造型的成本是200元,搭配一个B种造型的成本是360元,试说明(1)中哪种方案成本最低,最低成本是多少元?
【答案】解:(1)设搭配A种造型个,则搭配B种造型个,得
解得:
∵为正整数,
∴可以取29,30,31,32,33.
∴共有五种方案:
方案一:A:29,B:21;
方案二:A:30,B:20;
方案三:A:31,B:19;
方案四:A:32,B:18;
方案五:A:33,B:17;
(2)设费用为y,则
∵,∴y随x的增大而减小,
∴当时,即方案五的成本最低,最低成本=。
【解析】试题(1)根据题目中的两个不等关系“A种造型需甲种花卉的数量+B种造型需甲种花卉的数量≤349,A种造型需乙种花卉的数量+B种造型需乙种花卉的数量≤295”,即可列出一元一次不等式组,直接解不等式组,然后取整数解即可;(2)有两种方法,根据题意可得,B种造型的造价成本高于A种造型成本.所以B种造型越少,成本越低,所以选择B造型最少的方案,计算出这种方案的成本即可;根据(1)中得出的方案,分别计算出每种方案的成本,选择成本最低的方案即可.
试题解析: 解:(1)设搭配A种造型x个,则B种造型为(50﹣x)个,
依题意得,
解这个不等式组得:31≤x≤33,
∵x是整数,
∴x可取31,32,33,
∴可设计三种搭配方案 ①A种园艺造型31个,B种园艺造型19个;
②A种园艺造型32个,B种园艺造型18个;
③A种园艺造型33个,B种园艺造型17个.
(2)方法一:由于B种造型的造价成本高于A种造型成本.所以B种造型越少,成本越低,
故应选择方案③,成本最低,最低成本为33×200+17×360=12720(元),
方法二:方案①需成本31×200+19×360=13040(元);
方案②需成本32×200+18×360=12880(元);
方案③需成本33×200+17×360=12720(元),
∴应选择方案③,成本最低,最低成本为12720元.
科目:初中数学 来源: 题型:
【题目】在△OAB中,OA=OB,OA⊥OB.在△OCD中,OC=OD,OC⊥OD.
(1)如图1,若A,O,D三点在同一条直线上,求证:S△AOC=S△BOD;
(2)如图2,若A,O,D三点不在同一条直线上,△OAB和△OCD不重叠.则S△AOC=S△BOD是否仍成立?若成立,请予以证明;若不成立,也请说明理由.
(3)若A,O,D三点不在同一条直线上,△OAB和△OCD有部分重叠,经过画图猜想,请直接写出 S△AOC和S△BOD的大小关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠BAC=110°,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,BC=10cm.求:
(1)△ADE的周长;
(2)∠DAE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公楼顶端A测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1: ,求大楼AB的高度是多少?(精确到0.1米,参考数据: ≈1.41, ≈1.73, ≈2.45)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD为△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G.
(1)求证:AD垂直平分EF;
(2)若∠BAC=60°,猜测DG与AG间有何数量关系?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题原型:如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.过点D作△BCD的BC边上的高DE, 易证△ABC≌△BDE,从而得到△BCD的面积为.
初步探究:如图②,在Rt△ABC中,∠ACB=90°,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.用含a的代数式表示△BCD的面积,并说明理由.
简单应用:如图③,在等腰三角形ABC中,AB=AC,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.直接写出△BCD的面积.(用含a的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校实行学案式教学,需印制若干份教学学案.印刷厂有,甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要,两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示.
(1)填空:甲种收费方式的函数关系式是__________,乙种收费方式的函数关系式是__________.
(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com