分析 (1)连接PA,运用垂径定理及勾股定理即可求出圆的半径,从而可以求出B、C两点的坐标.
(2)由于圆P是中心对称图形,显然射线AP与圆P的交点就是所需画的点M,连接MB、MC即可;易证四边形ACMB是矩形;过点M作MH⊥BC,垂足为H,易证△MHP≌△AOP,从而求出MH、OH的长,进而得到点M的坐标.
解答 解:(1)连接PA,如图1所示.
∵PO⊥AD,
∴AO=DO.
∵AD=4$\sqrt{3}$,
∴OA=2$\sqrt{3}$.
∵点P坐标为(-2,0),
∴OP=2.
∴PA=$\sqrt{O{P}^{2}+O{A}^{2}}$=4.
∴BP=CP=4.
∴B(-6,0),C(2,0).
(2)连接AP,延长AP交⊙P于点M,连接MB、MC.
如图2所示,线段MB、MC即为所求作.
四边形ACMB是矩形.
理由如下:
∵△MCB由△ABC绕点P旋转180°所得,
∴四边形ACMB是平行四边形.
∵BC是⊙P的直径,
∴∠CAB=90°.
∴平行四边形ACMB是矩形.
过点M作MH⊥BC,垂足为H,如图2所示.
在△MHP和△AOP中,
∵∠MHP=∠AOP,∠HPM=∠OPA,MP=AP,
∴△MHP≌△AOP.
∴MH=OA=2$\sqrt{3}$,PH=PO=2.
∴OH=4.
∴点M的坐标为(-4,2$\sqrt{3}$).
点评 本题考查了垂径定理、勾股定理、全等三角形的判定与性质、矩形的判定与性质、圆周角定理、特殊角的三角函数、图形的旋转等知识,综合性比较强.证明点E、M、B、G在以点Q为圆心,QB为半径的圆上是解决第三小题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ①②③ | B. | ④⑤ | C. | ②④ | D. | ③⑤ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ax2-bx+c=0(a、b、c为常数) | B. | x(x+3)=x2-1 | ||
C. | x(x-2)=3 | D. | x2+$\frac{3}{x}$+1=0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com