精英家教网 > 初中数学 > 题目详情

已知坐标平面上的线段AB及点P,任取AB上一点Q,线段PQ长度的最小值称为点P到线段AB的距离,记作d(P→AB).
(1)如图所示,已知长度为2个单位的线段MN在x轴上,M点的坐标为(1,0),求点P(1,1)到线段MN的距离d(P→MN);
(2)已知坐标平面上点G到线段DE:y=x(0≤x≤3)的距离d(G→DE)=数学公式,且点G的横坐标为1,试求点G的纵坐标.

解:(1)∵M点的坐标为(1,0),点P的坐标为(1,1),
根据定义可得PM就是点P到线段MN的距离.
∴d(P→MN)=1.

(2)在坐标平面内作出线段DE:y=x(0≤x≤3),
∵点G的横坐标为1,
∴点G在直线x=1上,设直线x=1交x轴于点H,交DE于点K.
①如图,过点G1作G1F⊥DE于点F,则G1F就是点G1到线段DE的距离.
∵线段DE:y=x(0≤x≤3),
∴△G1FK,△DHK均为等腰直角三角形,
∵d(G1→DE)=
∴KF=,由勾股定理得GK=2,
又∵KH=OH=1,
∴HG1=3.
即G1的纵坐标为3;
②如图,过点O作G2O⊥OE交直线x=1于点G2,由题意知△OHG2为等腰直角三角形,
∵OH=1,
∴G2O=
∴点G2同样是满足条件的点.
∴点G2的纵坐标为-1.
综上,点G2的纵坐标为3或-1.
分析:(1)由M点的坐标为(1,0),点P的坐标为(1,1),根据定义可得PM就是点P到线段MN的距离.
(2)首先可得点G在直线x=1上,设直线x=1交x轴于点H,交DE于点K.然后分别从①如图,过点G1作G1F⊥DE于点F,②如图,过点O作G2O⊥OE交直线x=1于点G2,去分析求解即可求得答案.
点评:此题属于一次函数的综合题,考查了点到直线的距离、等腰直角三角形的性质、待定系数法求一次函数的解析式等知识.此题难度较大,注意掌握数形结合思想与分类讨论思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•浙江一模)如图,已知在平面直角坐标系中,点A(4,0)、B(-3,0),点C在y轴正半轴上,且tan∠CAO=1,点Q是线段AB上的动点,过点Q作QE∥AC交BC于点E.
(1)求点C的坐标及直线BC的解析式;
(2)连结CQ,当△CQE的面积最大时,求点Q的坐标;
(3)若点P是线段AC上的点,是否存在这样的点P,使△PQE成为等腰直角三角形?若存在,试求出所有符合条件的点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在平面直角坐标系xoy中,直线y=-3x-3交x轴于点A,交y轴于点C,点B的坐标为(3,0),抛物线y=ax2+bx+c经过A、B、C三点.
(1)求抛物线的解析式.
(2)已知D(4,-1),在抛物线上是否存在点P,使得以线段PD为直径的⊙O′经过坐标原点O?若点P存在,求出满足条件的点P的坐标;若不存在,说明理由.
(3)已知正方形BEFG的顶点E在x轴上,除B点外,正方形BEFG还有一个顶点在抛物线上,请直接写出E点所有可能的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•岱山县模拟)已知坐标平面上的线段AB及点P,任取AB上一点Q,线段PQ长度的最小值称为点P到线段AB的距离,记作d(P→AB).
(1)如图所示,已知长度为2个单位的线段MN在x轴上,M点的坐标为(1,0),求点P(1,1)到线段MN的距离d(P→MN);
(2)已知坐标平面上点G到线段DE:y=x(0≤x≤3)的距离d(G→DE)=
2
,且点G的横坐标为1,试求点G的纵坐标.

查看答案和解析>>

科目:初中数学 来源:2012年浙江省绍兴市上虞市中考适应性考试数学试卷(解析版) 题型:解答题

已知坐标平面上的线段AB及点P,任取AB上一点Q,线段PQ长度的最小值称为点P到线段AB的距离,记作d(P→AB).
(1)如图所示,已知长度为2个单位的线段MN在x轴上,M点的坐标为(1,0),求点P(1,1)到线段MN的距离d(P→MN);
(2)已知坐标平面上点G到线段DE:y=x(0≤x≤3)的距离d(G→DE)=,且点G的横坐标为1,试求点G的纵坐标.

查看答案和解析>>

同步练习册答案