精英家教网 > 初中数学 > 题目详情
已知二次函数y=x2+bx+c的图象与x轴的两个交点的横坐标分别为x1、x2,一元二次方程x2+b2x+20=0的两实根为x3、x4,且x2-x3=x1-x4=3,求二次函数的解析式,并写出顶点坐标.
分析:先将x2-x3=x1-x4=3化简为两根之和的形式,再代入数值进行计算.
解答:解:∵x2-x3=x1-x4=3
∴x2-x3=3,x1-x4=3
∴x2-x3+x1-x4=6即(x1+x2)-(x3+x4)=6
∴(x1+x2)-(x3+x4)=-b+b2=6,即b2-b-6=0,解得:b=-2或3
∵x2-x3=x1-x4
∴|x1-x2|=|x3-x4|
(x1+x2)2-4x1x2
=
(x3+x4)2-4x3x4

∴9-4c=81-4×20,
解得:c=2
又∵一元二次方程x2+b2x+20=0有两实根
∴△=b4-80≥0,
当b=-2,c=2时,有y=x2-2x+2,
△=4-4×1×2=-4<0,
与x轴无交点,
∴b=-2不合题意舍去
则解析式为y=x2+3x+2,
根据顶点坐标公式可得顶点坐标:(-
3
2
,-
1
4
)
点评:要求熟悉二次函数与一元二次方程的关系和坐标轴上两点距离公式|x1-x2|,并熟练运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知二次函数y=x2+mx+m-5,
(1)求证:不论m取何值时,抛物线总与x轴有两个交点;
(2)求当m取何值时,抛物线与x轴两交点之间的距离最短.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=x2+(2a+1)x+a2-1的最小值为0,则a的值是(  )
A、
3
4
B、-
3
4
C、
5
4
D、-
5
4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知二次函数y=-x2+2x+m的部分图象如图所示,则关于x的一元二次方程-x2+2x+m=0的解为(  )
A、x1=1,x2=3B、x1=0,x2=3C、x1=-1,x2=1D、x1=-1,x2=3

查看答案和解析>>

科目:初中数学 来源: 题型:

8、已知二次函数y1=x2-x-2和一次函数y2=x+1的两个交点分别为A(-1,0),B(3,4),当y1>y2时,自变量x的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=-x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).
(1)试求二次函数的解析式;
(2)求y的最大值;
(3)写出当y>0时,x的取值范围.

查看答案和解析>>

同步练习册答案