精英家教网 > 初中数学 > 题目详情
17.解下列方程
(1)-4x+1=-2($\frac{1}{2}$-x)
(2)2-$\frac{3x-7}{4}=-\frac{x+7}{5}$.

分析 (1)方程去括号,移项合并,把x系数化为1,即可求出解;
(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.

解答 解:(1)去括号得:-4x+1=-1+2x,
移项合并得:6x=2,
解得:x=$\frac{1}{3}$;
(2)去分母得:40-5(3x-7)=-4(x+7),
去括号得:40-15x+35=-4x-28,
移项合并得:11x=103,
解得:x=$\frac{103}{11}$.

点评 此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为「P」,即「P」=|x|+|y|.(其中的“+”是四则运算中的加法)例如:如果A(-1,3),那么「A」=|-1|+|3|=4.
(1)点M在反比例函数y=$\frac{3}{x}$的图象上,且「M」=4,求点M的坐标;
(2)求满足条件「N」=3的所有点N围成的图形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.计算:
(1)1232-122×124
(2)(-1)2015+(-$\frac{1}{2}$)-2-(3.14-π)0

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列真命题中,它的逆命题也是真命题的是(  )
A.全等三角形的对应角相等
B.对顶角相等
C.等边三角形是锐角三角形
D.直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.已知,∠ABC=90°,∠BAC=50°,点D是直线AC上的一个动点,将三角形CDB沿着线段DB翻折,翻折后点C对应点为点E,当∠ABD=20°时,BE∥AC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.定义:有一个内角为90°,且对角线相等的四边形称为准矩形.

(1)①如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=3,则BD=$\sqrt{13}$;
②如图2,直角坐标系中,A(0,3),B(5,0),若整点P使得四边形AOBP是准矩形,则点P的坐标是(5,3),(3,5);(整点指横坐标、纵坐标都为整数的点)
(2)如图3,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;
(3)已知,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC为等腰三角形时,请直接写出这个准矩形的面积是$\sqrt{15}$+$\sqrt{3}$,$\sqrt{39}$+$\sqrt{3}$,2$\sqrt{15}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.已知关于x的方程ax+b=0,有以下四种说法:
①若x=1是该方程的解,则a+b=0;②若a=-1,则x=b是该方程的解;
③若a≠0,则该方程的解是x=-$\frac{b}{a}$;④若a=0,b≠0,则该方程无解.
其中所有正确说法的序号是①②③④.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,四边形的顶点O在平面直角坐标系的原点,顶点A、B分别在x轴、y轴上,OB∥AC,OB=AC.
(1)求证:四边形OACB是矩形;
(2)若点E是边OA的中点,且∠OBE=∠EBF,试探究线段AF、AC、BF之间的数量关系,并说明理由;
(3)在(2)条件下,若BE=8,BF=10,求点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,一次函数y1=k1x+b(k1>0)的图象经过点C(-3,0),且与两坐标轴围成的三角形的面积为3.
(1)求该一次函数的解析式;
(2)若反比例函数y2=$\frac{{k}_{2}}{x}$的图象与该一次函数的图象交于一、三象限内的A、B两点,且AC=2BC.求k2的值;
(3)在(2)的条件下,请写出当x在什么范围时,y1>y2

查看答案和解析>>

同步练习册答案