精英家教网 > 初中数学 > 题目详情

如图,△ABC中,已知点D、E、F分别为BC、AD、CE的中点,设△ABC的面积为S△ABC,△BEF的面积为S△BEF,则S△BEF:S△ABC=________.

1:4
分析:根据三角形的中线把三角形分成面积相等的两个三角形用S△ABC表示出△ABD、△ACD、△BDE,△CDE的面积,然后表示出△BCE的面积,再表示出△BEF的面积,即可得解.
解答:∵点D、E分别为BC、AD的中点,
∴S△ABD=S△ACD=S△ABC
S△BDE=S△ABD=S△ABC
S△CDE=S△ACD=S△ABC
∴S△BCE=S△BDE+S△CDE=S△ABC+S△ABC=S△ABC
∵F是CE的中点,
∴S△BEF=S△BCE=×S△ABC=S△ABC
∴S△BEF:S△ABC=1:4.
故答案为:1:4.
点评:本题考查了三角形的面积,主要利用了三角形的中线把三角形分成面积相等的两个三角形,是此类题目常用的方法,要熟练掌握并灵活运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图在△ABC中,已知点D、E、F分别为边BC,AD,CE的中点,且△ABC的面积是4,则△BEF的面积是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图,△ABC中,已知AB=AC,要使AD=AE,需要添加的一个条件是
BD=CE

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,已知AB=AC,△DEF是△ABC的内接正三角形,α=∠BDF,β=∠CED,γ=∠AFE,则用β、γ表示α的关系式是
α=
β+γ
2
α=
β+γ
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,已知AB=AC,BD=DC,则∠ADB=
90°
90°

查看答案和解析>>

科目:初中数学 来源: 题型:

对同一图形,从不同的角度看就会有不同的发现,请根据右图解决以下问题:
(1)如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,分别以AB、AC所在的直线为对称轴,作出△ABD、△ACD的轴对称图形,点D的对称点分别为E、F,延长EB、FC相交于G点,试证明四边形AEGF是正方形;
(2)如图,在边长为12cm的正方形AEFG中,点B是边EG上一点,将边AE、AF分别沿AB、AC向内翻折至AD处,则点B、D、C在一条直线上,若EB=4cm,求△ABC的面积.

查看答案和解析>>

同步练习册答案