精英家教网 > 初中数学 > 题目详情
4.已知a、b、c是三角形的三边长,如果满足(a-5)2+|b-12|+c2-26c+169=0,则三角形的形状是(  )
A.底与边不相等的等腰三角形B.等边三角形
C.钝角三角形D.直角三角形

分析 根据给出的条件求出三角形的三边长,再根据勾股定理的逆定理来判定三角形的形状.

解答 解:∵(a-5)2+|b-12|+c2-26c+169=0,
∴(a-5)2+|b-12|+(c-13)2=0,
∴a=5,b=12,c=13,
∵52+122=132
∴此三角形是直角三角形.
故选D.

点评 本题考查了勾股定理的逆定理,用到的知识点是绝对值、偶次方的性质、勾股定理的逆定理、完全平方公式,关键是证出a,b,c之间的关系.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.若$\root{3}{{x}^{2}}$=x2,则x的值为0,±1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列各组的公因式是代数式x-2的是(  )
A.(x+2)2,(x-2)2B.x-2x,4x-6C.3x-6,x2-2xD.x-4,6x-18

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.已知函数y=x+b的图象与坐标轴围成的三角形面积为1,则b=(  )
A.±$\sqrt{2}$B.±2C.2D.$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.在平面直角坐标系xOy(如图)中,已知点A的坐标为(3,1),点B的坐标为(6,5),点C的坐标为(0,5);某二次函数的图象经过点A、点B与点C.
(1)求这个二次函数的解析式;
(2)假如点Q在该函数图象的对称轴上,且△ACQ是等腰三角形,直接写出点Q的坐标;
(3)如果第一象限内的点P在(1)中求出的二次函数的图象上,且tan∠PCA=$\frac{1}{2}$,求∠PCB的正弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,AB是⊙O的直径,点C是⊙O上一点,AD和过点C的切线互相垂直,垂足为D,直线DC与AB的延长线相交于P.弦CE平分∠ACB,交直径AB于点F,连结BE.
(1)求证:AC平分∠DAB;
(2)探究线段PC,PF之间的大小关系,并加以证明;
(3)若tan∠CEB=$\frac{3}{4}$,BE=5$\sqrt{2}$,求AC、BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:
(1)计算:(-1)2017+2cos45°-$\frac{1}{2}$$\sqrt{8}$
(2)化简:$\frac{{{m^2}-4}}{2m-2}$÷(1-$\frac{1}{m-1}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.某笔直河道上有甲、乙两港,相距120千米,一艘轮船从甲港出发,顺流航行4小时到达乙港,休息1小时后立即返回;一艘快艇在轮船出发3小时后从乙港出发,逆流航行3小时到达甲港,并立即返回(掉头时间忽略不计).已知水流速度是5千米/时,下图表示轮船和快艇距甲港的距离y(千米)与轮船行驶时间x(小时)之间的函数关系,结合图象解答下列问题:(顺流速度=船在静水中速度+水流速度;逆流速度=船在静水中速度-水流速度)
(1)轮船在静水中的速度是25千米/时;快艇在静水中的速度是45千米/时;
(2)求线段DF的函数解析式,并写出自变量x的取值范围;
(3)快艇出发多长时间,轮船和快艇在途中相距20千米?(直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,已知AOBC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点B在y轴的正半轴上,点C的坐标为(8,6),在BC边上取一点E,将纸片沿AE翻折,使点C恰好落在AB边上的点F处.
(1)求AB的长;
(2)求点E的坐标;
(3)写出点F的坐标.

查看答案和解析>>

同步练习册答案