【题目】下面各组数中,相等的一组是( )
A.﹣22与(﹣2)2
B. ?与( )3??
C.﹣|﹣2|与﹣(﹣2)
D.(﹣3)3与﹣33
【答案】D
【解析】解:∵﹣22=﹣4,(﹣2)2=4,∴﹣22≠(﹣2)2 ,
∴选项A不正确;
∵ = ,( )3= ,
∴ ≠( )3 ,
∴选项B不正确;
∵﹣|﹣2|=﹣2,﹣(﹣2)=2,
∴﹣|﹣2|≠﹣(﹣2),
∴选项C不正确;
∵(﹣3)3=﹣27,﹣33=﹣27,
∴(﹣3)3=﹣33 ,
∴选项D正确.
故选:D.
【考点精析】利用有理数的乘方和绝对值对题目进行判断即可得到答案,需要熟知有理数乘方的法则:1、正数的任何次幂都是正数2、负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n;正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离.
科目:初中数学 来源: 题型:
【题目】如图:
(1)找出直线DC,AC被直线BE所截形成的同旁内角.
(2)指出∠DEF与∠CFE是由哪两条直线被哪一条直线所截形成的什么角.
(3)试找出图中与∠DAC是同位角的所有角.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC为等边三角形,过点B作BD⊥AC于点D,过D作DE∥BC,且DE=CD,连接CE,
(1)求证:△CDE为等边三角形;
(2)请连接BE,若AB=4,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:AD与⊙O相切于点D,AF经过圆心与圆交于点E、F,连接DE、DF,且EF=6,AD=4.
(1)证明:AD2=AEAF;
(2)延长AD到点B,使DB=AD,直径EF上有一动点C,连接CB交DF于点G,连接EG,设∠ACB=α,BG=x,EG=y.
①当α=900时,探索EG与BD的大小关系?并说明理由;
②当α=1200时,求y与x的关系式,并用x的代数式表示y.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+c与x轴交于A、B两点(A在B的左边),与y轴交于点C,抛物线上有一动点P
(1)若A(﹣2,0),C(0,﹣4)
①求抛物线的解析式;
②在①的情况下,若点P在第四象限运动,点D(0,﹣2),以BD、BP为邻边作平行四边形BDQP,求平行四边形BDQP面积的取值范围.
(2)若点P在第一象限运动,且a<0,连接AP、BP分别交y轴于点E、F,则问 是否与a,c有关?若有关,用a,c表示该比值;若无关,求出该比值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把一副三角尺ABC与BDE按如图所示那样拼在一起,其中A,B,D三点在同一直线上,BM为∠CBE的平分线,BN为∠DBE的平分线,则∠MBN的度数是( )
A.60°
B.67.5°
C.75°
D.85°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了丰富校园文化生活,某校计划在早间校园广播台播放“百家讲坛”的部分内容,为了了解学生的喜好,随机抽取若干名学生进行问卷调查(每人只选一项内容),整理调查结果,绘制统计图如下:
请根据统计图提供的信息回答以下问题:
(1)抽取的学生数为名;
(2)该校有3000名学生,估计喜欢收听易中天《品三国》的学生有名;
(3)估计该校女学生喜欢收听刘心武评《红楼梦》的约占全校学生的%.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com