精英家教网 > 初中数学 > 题目详情
函数y=ax+b的图象过点(0,1),(1,0),则0≤ax+b<1的解集是
0<x≤1
0<x≤1
分析:先由函数y=ax+b的图象过点(0,1),(1,0),根据一次函数的性质得出当x=0时,y=1;当x=1时,y=0,且y随x的增大而减小,再根据一次函数与一元一次不等式的关系,得出0≤y<1时,0<x≤1,进而求出0≤ax+b<1的解集.
解答:解:∵函数y=ax+b的图象过点(0,1),(1,0),
∴当x=0时,y=1;当x=1时,y=0,
∴y随x的增大而减小,
∴0≤y<1时,0<x≤1,
即0≤ax+b<1的解集是0<x≤1.
故答案为0<x≤1.
点评:本题考查了一次函数的图象性质及一次函数与一元一次不等式的关系,难度适中,直线y=kx+b在x轴上方部分所有的点的横坐标所构成的集合即为不等式kx+b>0的解集.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

函数y=ax+b的图象经过一、二、三象限,则二次函数y=ax2+bx的大致图象是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

13、函数y=ax+b的图象如图所示,则y随x的增大而
减小

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
k
x
的图象经过点P(2,2),函数y=ax+b的图象与直线y=-x平行,并且经过反比例函数图象上一点Q(1,m).则函数y=ax2+bx+
k-25
k
有最
 
值,这个值是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•乐山)若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是(  )

查看答案和解析>>

同步练习册答案