【题目】如图,直线与轴交于点,与轴交于点,点为线段的中点,的平分线与轴相较于点,、两点关于轴对称.
(1)一动点从点出发,沿适当的路径运动到直线上的点,再沿适当的路径运动到点处.当的运动路径最短时,求此时点的坐标及点所走最短路径的长.
(2)点沿直线水平向右运动得点,平面内是否存在点使得以、、、为顶点的四边形为菱形,若存在,请直接写出点的坐标;若不存在,请说明理由.
【答案】(1)点的坐标为,点所走最短路径的长为;(2)存在,点的坐标为或.
【解析】
(1)先根据直线的解析式求出点A、B的坐标,再根据直角三角形和角平分线以及对称的性质得出点C、D、E的坐标,然后利用待定系数法可求出直线BC的解析式,最后根据对称性质确定最短路径,求出直线的解析式,联立两个函数的解析式即可得;
(2)根据菱形的性质,分两种情况:BD为边和BD为对角线,然后分别利用菱形的性质、两点之间的距离公式列出等式求解即可.
(1)对于
当时,,解得,则点B的坐标为
当时,,则点A的坐标为
点为线段的中点
由点A、B的坐标得:
在中,,即
平分
在中,,即
解得
、两点关于轴对称
设直线BC的解析式为
将点代入得,解得
则直线BC的解析式为
如图,作点D关于直线BC的对称点,连接ED交BC于点F
由对称的性质、两点之间线段最短可知,点P所走最短路径的长为的长
由对称的性质可知,
过点作轴于点G
在和中,
由两点之间的距离公式得:
设直线的解析式为
将点代入得,解得
则直线的解析式为
联立,解得
则点的坐标为;
(2)存在,点的坐标的求解过程如下:
,点沿直线水平向右运动得点
可设点的坐标为,且
由菱形的性质,分以下两种情况:
①若BD为边
由菱形的定义得:
由两点之间的距离公式得:
解得或(舍去)
则点的坐标为
②若BD为对角线
由菱形的定义得:
由两点之间的距离公式得:
解得
则点的坐标为
综上,点的坐标为或.
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=10cm,E为对角线BD上一动点,连接AE,CE,过E点作EF⊥AE,交直线BC于点F.E点从B点出发,沿着BD方向以每秒2cm的速度运动,当点E与点D重合时,运动停止.设△BEF的面积为ycm2,E点的运动时间为x秒.
(1)求证:CE=EF;
(2)求y与x之间关系的函数表达式,并写出自变量x的取值范围;
(3)求△BEF面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数y=+b(a、b为常数且a≠0)中,当x=2时,y=4;当x=﹣1时,y=1.请对该函数及其图象进行如下探究:
(1)求该函数的解析式,并直接写出该函数自变量x的取值范围;
(2)请在下列直角坐标系中画出该函数的图象;
(3)请你在上方直角坐标系中画出函数y=2x的图象,结合上述函数的图象,写出不等式+b≤2x的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明家所在居民楼的对面有一座大厦AB,高为74米,为测量居民楼与大厦之间的距离,小明从自己家的窗户C处测得大厦顶部A的仰角为37°,大厦底部B的俯角为48°.
(1)求∠ACB的度数;
(2)求小明家所在居民楼与大厦之间的距离.(参考数据:sin37°≈,cos37°≈,tan37°≈,sin48°≈,cos48°≈,tan48°≈)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在校园歌手大赛中,甲、乙两位同学的表现分外突出,现场A、B、C、D、E、F六位评委的打分情况以及随机抽取的50名同学的民意调查结果分别如下统计表和不完整的条形统计图:(说明:随机抽取的50名同学每人必须从“好”、“较好”、“一般”中选一票投给每个选手)
A | B | C | D | E | F | |
甲 | 89 | 97 | 90 | 93 | 95 | 94 |
乙 | 89 | 92 | 90 | 97 | 94 | 94 |
(1)a= ,六位评委对乙同学所打分数的中位数是 ,并补全条形统计图;
(2)学校规定评分标准如下:去掉评委评分中最高和最低分,再算平均分并将平均分与民意测评分按2:3计算最后得分.求甲、乙两位同学的最后得分.(民意测评分=“好”票数×2+“较好”票数×1+“一般”票数×0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰Rt△ABC的直角边长为4,以A为圆心,直角边AB为半径作弧BC1,交斜边AC于点C1,C1B1⊥AB于点B1,设弧BC1,C1B1,B1B围成的阴影部分的面积为S1,然后以A为圆心,AB1为半径作弧B1C2,交斜边AC于点C2,C2B2⊥AB于点B2,设弧B1C2,C2B2,B2B1围成的阴影部分的面积为S2,按此规律继续作下去,得到的阴影部分的面积S3=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x+6与反比例函数y=(k>0)的图象交于点M、N,与x轴、y轴分别交于点B、A,作ME⊥x轴于点E,NF⊥x轴于点F,过点E、F分别作EG∥AB,FH∥AB,分别交y轴于点G、H,ME交HF于点K,若四边形MKFN和四边形HGEK的面积和为12,则k的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】测量计算是日常生活中常见的问题,如图,建筑物BC的屋顶有一根旗杆AB,从地面上D点处观测旗杆顶点A的仰角为50°,观测旗杆底部B点的仰角为45°,(可用的参考数据:sin50°≈0.8,tan50°≈1.2)
(1)若已知CD=20米,求建筑物BC的高度;
(2)若已知旗杆的高度AB=5米,求建筑物BC的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点D是BC边的中点,连接AD,分别过点A,C作AE∥BC,CE∥AD交于点E,连接DE,交AC于点O.
(1)求证:四边形ADCE是矩形;
(2)若AB=10,sin∠COE=,求CE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com