精英家教网 > 初中数学 > 题目详情

已知:如图,E,F是四边形ABCD的对角线AC上的两点,AF=CE,连接DE,DF,BE,BF.四边形DEBF为平行四边形.求证:四边形ABCD是平行四边形.


证明:连结BD交AC于点O

∵四边形DEBF为平行四边形,∴OD=OB,OE=OF,

∵AF=CE,∴AF-EF=CE-EF,即AE=CF,∴AE+OE=CF+OF,即OA=OC

∴四边形ABCD是平行四边形.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


若实数满足<0,,则函数的图像可能是(  )

A            B            C           D

查看答案和解析>>

科目:初中数学 来源: 题型:


为了对一棵倾斜的古杉树AB进行保护,需测量其长度.如图,在地面上选取一点C,测得∠ACB=45°,AC=24m,∠BAC=66.5°,求这棵古杉树AB的长度.(结果取整数)

参考数据:≈1.41,sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30.

 

查看答案和解析>>

科目:初中数学 来源: 题型:


已知反比例函数,则自变量的取值范围是        ;若式子的值为0,则=        

查看答案和解析>>

科目:初中数学 来源: 题型:


查看答案和解析>>

科目:初中数学 来源: 题型:


在平面直角坐标系中,点M(,),以点M为圆心,OM长为半径作⊙M . 使⊙M与直线OM的另一交点为点B,与轴, 轴的另一交点分别为点D,A(如图),连接AM.点P是上的动点.

(1)写出∠AMB的度数;

(2)点Q在射线OP上,且OP·OQ=20,过点Q作QC垂直于直线OM,垂足为C,直线QC交轴于点E.

①当动点P与点B重合时,求点E的坐标;

②连接QD,设点Q的纵坐标为,△QOD的面积为S.求S与的函数关系式及S的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:


将分式方程去分母,得到正确的整式方程是································ (  )

A.1-2x=3               B.x-1-2x=3          C.1+2x=3                 D.x-1+2x=3

查看答案和解析>>

科目:初中数学 来源: 题型:


研究几何图形,我们往往先给出这类图形的定义,再研究它的性质和判定.

定义∶六个内角相等的六边形叫等角六边形.

(1)研究性质

①如图1,等角六边形ABCDEF中,三组正对边ABDEBCEFCDAF分别有什么位置关系?证明你的结论.

②如图2,等角六边形ABCDEF中,如果有ABDE,则其余两组正对边BCEFCDAF相等吗?证明你的结论.

③如图3,等角六边形ABCDEF中.如果三条正对角线ADBECF相交于一点O,那么三组正对边ABDEBCEFCDAF分别有什么数量关系?证明你的结论.

(2)探索判定

三组正对边分别平行的六边形,至少需要几个内角为120°才能保证该六变形—定是等角六边形?

查看答案和解析>>

科目:初中数学 来源: 题型:


一个圆柱的底面直径为6cm,高为10cm,则这个圆柱的侧面积是  cm2(结果保留π).

查看答案和解析>>

同步练习册答案