精英家教网 > 初中数学 > 题目详情

在一次活动课上,把两个半径为5和一个半径为8的圆形纸片放在桌面上,使它们两两外切,若要用一个大圆形纸片把这三个圆形的纸片完全盖住,那么这个大圆形纸片的最小半径是


  1. A.
    20
  2. B.
    15
  3. C.
    数学公式
  4. D.
    数学公式
C
分析:根据题意首先,我们知道所求大圆与三圆均内切,易知三个小圆圆心所组成的三角形为等腰三角形,据此即可进行求解.
解答:设所求的大圆形的半径为r,
三个小圆圆心所组成的三角形为等腰三角形,底边长为10,腰为13,底边上的高为12,
再设AB为半径为5的两圆圆心,C为半径为8的圆心,O为大圆圆心,
则可得:OA=OB=r-5,OC=r-8,
由于整个图形为轴对称图形,对称轴为AB底边上的高所在直线,
可知O在三角形ABC底边的高线上,
设垂足为H,由于高为12,OH+OC=12,OH=20-r,且三线合一,AH=5,
则在Rt三角形OHA中,由勾股定理:
可得:(r-5)2=52+(20-r)2
解得r=
故选C.
点评:本题考查了相切两圆的性质,难度较大,难点在于在Rt△OHA中利用勾股定理列出等式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

在一次数学兴趣小组的活动课上,师生有下面的一段对话,请你阅读完后再解答问题.
老师:同学们,今天我们来探索如下方程的解法:(x2-x)2-(x2-x)+12=0
学生甲:老师,这个方程先去括号,再合并同类项,行吗?
老师:这样,原方程可整理为x4-2x3-7x2+8x+12=0,次数变成了4次,用现有知识无法解答.同学们再观察观察,看看这个方程有什么特点?
学生乙:老师,我发现x2-x是整体出现的,最好不要去括号!
老师:很好,我们把x2-x看成一个整体,用y表示,即x2-x=y,那么原方程就变为y2+8y+12=0.
全体学生:(同学们都特别高兴)噢,这不是我们熟悉的一元二次方程吗?!
老师:大家真会观察和思考,太棒了!显然一元二次方程y2+8y+12=0的根是y1=6,y2=2,那么就有x2-x=6或x2-x=2.
学生丙:对啦,再解这两个方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有这么多根啊!
老师:同学们,通常我们把这种方法叫做换元法.在这里使用它的最大妙处在于降低了原方程的次数,这是一种重要的转化方法.
全体同学:OK,换元法真神奇!
现在,请你用换元法解下列分式方程:(
x
x-1
)2-5(
x
x-1
)-6=0

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

在一次数学兴趣小组的活动课上,有下面的一段对话,请你阅读完后再解答问题.
老师:同学们,今天我们来探索如下方程的解法:(
x
x-1
)2-4(
x
x-1
)+4=0

学生甲:老师,原方程可整理为
x2
(x-1)2
-
4x
x-1
+4=0
,再去分母,行得通吗?
老师:很好,当然可以这样做.
再仔细观察,看看这个方程有什么特点?还可以怎样解答?
学生乙:老师,我发现
x
x-1
是整体出现的!
老师:很好,我们把
x
x-1
看成一个整体,用y表示,即可设
x
x-1
=y,那么原方程就变为y2-4y+4=0.
全体学生:噢,等号左边是一个完全平方式?!方程可以变形成(y-2)2=0
老师:大家真会观察和思考,太棒了!显然y2-4y+4=0的根是y=2,那么就有
x
x-1
=2
学生丙:对啦,再解这两个方程,可得原方程的根x=2,再验根就可以了!
老师:同学们,通常我们把这种方法叫做换元法,这是一种重要的转化方法.
全体同学:OK,换元法真神奇!
现在,请你用换元法解下列分式方程(组):
(1)(
2x
x-1
)2-
4x
x-1
+1=0

(2)
6
x-y
+
4
x+y
=3
9
x-y
-
1
x+y
=1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在一次数学兴趣小组的活动课上,师生有下面的一段对话,请你阅读完后再解答问题.
老师:同学们,今天我们来探索如下方程的解法:(x2-x)2-(x2-x)+12=0
学生甲:老师,这个方程先去括号,再合并同类项,行吗?
老师:这样,原方程可整理为x4-2x3-7x2+8x+12=0,次数变成了4次,用现有知识无法解答.同学们再观察观察,看看这个方程有什么特点?
学生乙:老师,我发现x2-x是整体出现的,最好不要去括号!
老师:很好,我们把x2-x看成一个整体,用y表示,即x2-x=y,那么原方程就变为y2+8y+12=0.
全体学生:(同学们都特别高兴)噢,这不是我们熟悉的一元二次方程吗?!
老师:大家真会观察和思考,太棒了!显然一元二次方程y2+8y+12=0的根是y1=6,y2=2,那么就有x2-x=6或x2-x=2.
学生丙:对啦,再解这两个方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有这么多根啊!
老师:同学们,通常我们把这种方法叫做换元法.在这里使用它的最大妙处在于降低了原方程的次数,这是一种重要的转化方法.
全体同学:OK,换元法真神奇!
现在,请你用换元法解下列分式方程:数学公式

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在一次数学兴趣小组的活动课上,有下面的一段对话,请你阅读完后再解答问题.
老师:同学们,今天我们来探索如下方程的解法:(
x
x-1
)2-4(
x
x-1
)+4=0

学生甲:老师,原方程可整理为
x2
(x-1)2
-
4x
x-1
+4=0
,再去分母,行得通吗?
老师:很好,当然可以这样做.
再仔细观察,看看这个方程有什么特点?还可以怎样解答?
学生乙:老师,我发现
x
x-1
是整体出现的!
老师:很好,我们把
x
x-1
看成一个整体,用y表示,即可设
x
x-1
=y,那么原方程就变为y2-4y+4=0.
全体学生:噢,等号左边是一个完全平方式?!方程可以变形成(y-2)2=0
老师:大家真会观察和思考,太棒了!显然y2-4y+4=0的根是y=2,那么就有
x
x-1
=2
学生丙:对啦,再解这两个方程,可得原方程的根x=2,再验根就可以了!
老师:同学们,通常我们把这种方法叫做换元法,这是一种重要的转化方法.
全体同学:OK,换元法真神奇!
现在,请你用换元法解下列分式方程(组):
(1)(
2x
x-1
)2-
4x
x-1
+1=0

(2)
6
x-y
+
4
x+y
=3
9
x-y
-
1
x+y
=1

查看答案和解析>>

同步练习册答案