精英家教网 > 初中数学 > 题目详情
精英家教网如图,抛物线y=ax2+bx+c(a≠0)与x轴、y轴分别相交于A(-1,0)、B(3,0)、C(0,3)三点,其顶点为D.(1)求:经过A、B、C三点的抛物线的解析式;
(2)求四边形ABDC的面积;
(3)试判断△BCD与△COA是否相似?若相似写出证明过程;若不相似,请说明理由.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-
b
2a
4ac-b2
4a
)
分析:(1)已知A、B、C三点坐标,由待定系数可求出抛物线解析式;
(2)求出顶点坐标,作辅助线把四边形ABDC的面积拆为二个三角形面积加上一梯形的面积,从而求出四边形ABDC的面积;
(3)判断△BCD与△COA是否相似,验证是否满足相似比例关系.
解答:解:(1)由题意,得
a-b+c=0
9a+3b+c=0
c=3

解之,得
a=-1
b=2
c=3

∴y=-x2+2x+3;

(2)由(1)可知y=-(x-1)2+4,
∴顶点坐标为D(1,4),精英家教网
设其对称轴与x轴的交点为E,
∵S△AOC=
1
2
|AO|•|OC|,
=
1
2
×1×3,
=
3
2
,(5分)
S梯形OEDC=
1
2
(|DC|+|DE|)×|OE|,
=
1
2
(3+4)×1,
=
7
2

S△DEB=
1
2
|EB|•|DE|,
=
1
2
×2×4,
=4,(7分)
S四边形ABDC=S△AOC+S梯形OEDC+S△DEB
=
3
2
+
7
2
+4,
=9;

(3)△DCB与△AOC相似,(9分)精英家教网
证明:过点D作y轴的垂线,垂足为F,
∵D(1,4),F(0,4),
∴Rt△DFC中,DC=
2
,且∠DCF=45°,
在Rt△BOC中,∠OCB=45°,BC=3
2

∴∠AOC=∠DCB=90°三角形相似,
DC
AO
=
BC
CO
=
2
1

∴△DCB∽△AOC.
点评:本题结合了二次函数的综合运用,考查了不规则四边形面积的求法和三角形相似.注意辅助线的作法,学会拆不规则图形来求其面积.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,直线y=ax+b与抛物线y=ax2+bx+c的图象在同一坐标系中可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y1=-ax2-ax+1经过点P(-
1
2
9
8
),且与抛物线y2=ax2-ax-1相交于A,B两点.
(1)求a值;
(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D精英家教网两点,试问当x为何值时,线段CD有最大值,其最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=-ax2+ax+6a交x轴负半轴于点A,交x轴正半轴于点B,交y轴正半轴于点D,精英家教网O为坐标原点,抛物线上一点C的横坐标为1.
(1)求A,B两点的坐标;
(2)求证:四边形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+ax+c与y轴交于点C(0,-2),精英家教网与x轴交于点A、B,点A的坐标为(-2,0).
(1)求该抛物线的解析式;
(2)M是线段OB上一动点,N是线段OC上一动点,且ON=2OM,分别连接MC、MN.当△MNC的面积最大时,求点M、N的坐标;
(3)若平行于x轴的动直线与该抛物线交于点P,与线段AC交于点F,点D的坐标为(-1,0).问:是否存在直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案