精英家教网 > 初中数学 > 题目详情
阅读以下材料:对于三个数a,b,c,用M{a,b,c}表示这三个数的
平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{-1,2,3}=
-1+2+3
3
=
4
3
;min{-1,2,3}=-1;min{-1,2,a}=
a(a≤-1)
-1(a>-1)
解决下列问题:
(1)min{
1
2
2
2
3
2
}
 
若min{2,2x+2,4-2x}=2,则x的范围为
 

(2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x;
②根据①,你发现了结论“如果M{a,b,c}=min{a,b,c},那么
 
(填a,b,c的大小关系)”.证明你发现的结论;
③运用②的结论,填空:
若M{2x+y+2,x+2y,2x-y}=min{2x+y+2,x+2y,2x-y},则x+y=
 
分析:①M{a,b,c}表示这a,b,c三个数的平均数,即求
a+b+c
3
的值;
②min{a,b,c}表示这a,b,c三个数中最小的数,即比较三个数的大小哪一个最小.
解答:解:(1)min{
1
2
2
2
3
2
}
=
1
2

由min{2,2x+2,4-2x}=2,得
2x+2≥2
4-2x≥2
,即0≤x≤1.

(2)①∵M{2,x+1,2x}=min{2,x+1,2x},∴
x+1≤2x
x+1≤2
,即
x≥1
x≤1
,∴x=1
②证明:由M{a,b,c}=min{a,b,c},可令
a+b+c
3
=a
,即b+c=2a⑤;
又∵
a+b+c
3
≤b
a+b+c
3
≤c
,解之
得:a+c≤2b ⑥,a+b≤2c⑦;
由⑤⑥可得c≤b;由⑤⑦可得b≤c;
∴b=c;将b=c代入⑤得c=a;
∴a=b=c.
③据②可得
2x+y+2=x+2y
2x+y+2=2x-y

解之得y=-1,x=-3,
∴x+y=-4.
点评:本题解决的关键是读懂题意,据题意结合方程和不等式去求解,考查综合应用能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

精英家教网阅读以下材料:
对于三个数a、b、c,用M(a,b,c)表示这三个数的平均数,用min(a,b,c)表示这三个数中最小的数.例如:M{-1,2,3}=
-1+2+3
3
=
4
3
;min{-1,2,3}=-1;min{-1,2,a}=a(a≤-1);-1(a>-1)
解决下列问题:
(1)填空:min{sin30°,cos45°,tan30°}=
 
,如果min{2,2x+2,4-2x}=2,则x的取值范围为
 
≤x≤
 

(2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x.
②根据①,你发现了结论“如果M{a,b,c}=min{a,b,c},那么
 
(填a,b,c的大小关系)”,
证明你发现的结论.
③运用②的结论,填空:若M{2x+y+2,x+2y,2x-y}=min{2x+y+2,x+2y,2x-y},则x+y=
 

(3)在同一直角坐标系中作出函数y=x+1,y=(x+1)2,y=2-x的图象(不需列表描点),通过观察图象,填空:min{x+1,(x-1)2,2-x}的最大值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读以下材料:
对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:
M{-1,2,3}=
-1+2+3
3
=
4
3
;min{-1,2,3}=-1;min{-1,2,a}=
a(a≤-1)
-1(a>-1)

解决下列问题:
(1)填空:
如果min{2,2x+2,4-2x}=2,则x的取值范围为
 

(2)如果M{2,x+1,2x}=min{2,x+1,2x},求x.

查看答案和解析>>

科目:初中数学 来源:2013届江苏省江阴暨阳九年级上学期期末考试数学试卷(带解析) 题型:解答题

阅读以下材料:
对于三个数,用表示这三个数的平均数,用表示这三个数中最小的数.例如:

解决下列问题:
(1)填空:       
(2)①如果,求
②根据①,你发现了结论:
“如果,那么        (填的大小关系)”.
③运用②的结论,填空:
,则      
(3)填空:的最大值为        

查看答案和解析>>

科目:初中数学 来源:2012-2013学年江苏省江阴暨阳九年级上学期期末考试数学试卷(解析版) 题型:解答题

阅读以下材料:

对于三个数,用表示这三个数的平均数,用表示这三个数中最小的数.例如:

解决下列问题:

(1)填空:       

(2)①如果,求

②根据①,你发现了结论:

“如果,那么        (填的大小关系)”.

③运用②的结论,填空:

,则      

(3)填空:的最大值为        

 

查看答案和解析>>

同步练习册答案