如图,EF//AD,∠1=∠2,∠BAC=80°.将求∠AGD的过程填写完整.
∵EF∥AD,
∴∠2= ( )
又∵∠1=∠2,
∴∠1=∠3( )
∴AB∥ ( )
∴∠BAC+ =180°( )
∵∠BAC=80°,
∴∠AGD= .
科目:初中数学 来源: 题型:解答题
如图,AB∥CD,直线a交AB、CD分别于点E、F,点M在线段EF上(点M不与E、F重合),P是直线CD上的一个动点(点P不与F重合),∠AEF=n0,求∠FMP+∠FPM的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,EF∥AD,∠1=∠2,∠BAC=80°,将求∠AGD的过程填写完整.
∵EF//AD,
∴∠2= ( )
又∵∠1=∠2,
∴∠1=∠3( )
∴AB// ( )
∴∠BAC+ =180°( )
∵∠BAC=80°,
∴∠AGD=
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,在△ABC中,已知∠ABC=35°,点D在BC上,点E在AC上,∠BAD=∠EBC,AD交BE于F.
(1)求∠BFD的度数;
(2)若EG//AD交BC于G,EH⊥BE交BC于H,求∠HEG的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.请将解题过程填写完整.
解:∵EF∥AD(已知)
∴∠2= _________ ( )
又∵∠1=∠2(已知)
∴∠1=∠3( )
∴AB∥ _________ ( )
∴∠BAC+ _________ =180°( )
∵∠BAC=70°(已知)
∴∠AGD= _________ .
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
若∠C=,∠EAC+∠FBC=
(1)如图①,AM是∠EAC的平分线,BN是∠FBC的平分线,若AM∥BN,则与有何关系?并说明理由.
(2)如图②,若∠EAC的平分线所在直线与∠FBC平分线所在直线交于P,试探究∠APB与、的关系是 .(用、表示)
(3)如图③,若≥,∠EAC与∠FBC的平分线相交于, ;依此类推,则= (用、表示)
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知直线,直线与、分别交于、两点,点是直线上的一动点
如图,若动点在线段之间运动(不与、两点重合),问在点的运动过程中是否始终具有这一相等关系?试说明理由;
如图,当动点在线段之外且在的上方运动(不与、两点重合),则上述结论是否仍成立?若不成立,试写出新的结论,并说明理由;
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.
(1)求线段MN的长;
(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;
(3)若C在线段AB的延长线上,且满足AC-CB=b cm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com