精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,的半径为1AB两点坐标分别为已知点P上的一点,点Q是线段AB上的一点,设的面积为S,当为直角三角形时,S的取值范围为______

【答案】S

【解析】

根据△OPQ为直角三角形时,∠OQP不可能为90°,所以分两种情况:分别以OP为直角顶点,根据直径所对的圆周角为直角,通过画辅助圆确定PQ,画图,根据直角三角形面积公式计算可得结论.

解:①当P为直角顶点时,

OQ最长时,如图1OQ5QA重合,PQ 2 S ×1×2

OQ最短时,OQ3,此时OQABPQ 2 S

②当O为直角顶点时,如图2

QA重合时,OA最大,此时S ×1×5

OQAB时,S最小,S

综上,当△OPQ为直角三角形时,S的取值范围为S.

故答案为: ≤ S ≤

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】现如今,垃圾分类意识已深入人心,垃圾一般可分为:可回收物、厨余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了两袋垃圾.

(1)直接写出甲所拿的垃圾恰好是厨余垃圾的概率;

(2)求乙所拿的两袋垃圾不同类的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O是正△ABC内一点,OA3OB4OC5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:BOA可以由△BOC绕点B逆时针旋转60°得到;OO′的距离为4AOB150°;④S四边形AOBO6+3;其中正确的结论是(  )

A. ①②③ B. ①③④ C. ②③④ D. ①②

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某条公共汽车线路收支差额与乘客量的函数关系如图所示(收支差额车票收入支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变支出费用,提高车票价格;建议(Ⅱ)不改变车票价格,减少支出费用. 下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则( )

A. ①反映了建议(Ⅰ),③反映了建议(Ⅱ) B. ②反映了建议(Ⅰ),④反映了建议(Ⅱ)

C. ①反映了建议(Ⅱ),③反映了建议(Ⅰ) D. ②反映了建议(Ⅱ),④反映了建议(Ⅰ)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为测量瀑布AB的高度,测量人员在瀑布对面山上的D点处测得瀑布顶端A点的仰角是,测得瀑布底端B点的俯角是AB与水平面垂直又在瀑布下的水平面测得注:CGF三点在同一直线上,于点,斜坡,坡角(参考数据:)

求测量点D距瀑布AB的距离精确到

求瀑布AB的高度精确到

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线x轴于点,交y轴于点C

求抛物线的解析式;

如图2D点坐标为,连结若点H是线段DC上的一个动点,求的最小值.

如图3,连结AC,过点Bx轴的垂线l,在第三象限中的抛物线上取点P,过点P作直线AC的垂线交直线l于点E,过点Ex轴的平行线交AC于点F,已知

求点P的坐标;

在抛物线上是否存在一点Q,使得成立?若存在,求出Q点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠BAC=90°

(1)先作∠ACB的平分线交AB边于点P,再以点P为圆心,PA长为半径作⊙P;(要求:尺规作图,保留作图痕迹,不写作法)

(2)请你判断(1)中BC与⊙P的位置关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线分别交轴、轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC 轴于点C,交抛物线于点D.

(1)若抛物线的解析式为,设其顶点为M,其对称轴交AB于点N.

①求点M、N的坐标;

②是否存在点P,使四边形MNPD为菱形?并说明理由;

(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ADBC,PAB的平分线与CBA的平分线相交于E,CE的连线交AP于D.

求证:AD+BC=AB.

查看答案和解析>>

同步练习册答案